Spatial variation of blood viscosity: modelling using shear fields measured by a μPIV based technique.

Med Eng Phys

Experimental and Computational Laboratory for the Analysis of Turbulence (ECLAT), King's College London, Strand, London, United Kingdom.

Published: September 2011

The spatial characteristics of blood viscosity were investigated by combining a newly developed constitutive equation with shear deformation fields calculated from velocity measurements obtained by a μPIV based technique. Blood at physiological hematocrit levels and in the presence of aggregation was sheared in a narrow gap plate-plate geometry and the velocity and aggregation characteristics were determined from images captured using a high resolution camera. Changes in the microstructure of blood caused by aggregation were observed to affect the flow characteristics. At low shear rates, high aggregation and network formation caused the RBC motion to become essentially two-dimensional. The measured velocity fields were used to estimate the magnitude of shear which was subsequently used in conjunction with the new model to assess the spatial variation of viscosity across the flow domain. It was found that the non-uniform microstructural characteristics of blood influence its viscosity distribution accordingly. The viscosity of blood estimated in the core of the examined flow, using a zero-gradient core velocity profile assumption, was found to be significantly higher than the overall effective viscosity determined using other velocity profile assumptions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2010.09.004DOI Listing

Publication Analysis

Top Keywords

spatial variation
8
blood viscosity
8
μpiv based
8
based technique
8
characteristics blood
8
velocity profile
8
blood
6
viscosity
6
velocity
5
variation blood
4

Similar Publications

Analysis of the spatiotemporal trends of urban scale and urban vitality on ecosystem services balance provides an essential basis for regional sustainable development. This study employs the Spatial Durbin Model (SDM), Spatial Autoregressive Model (SAR), and Geographically and Temporally Weighted Regression (GTWR) to effectively capture spatiotemporal associations between urban scale, urban vitality, and ecosystem services supply-demand balance, providing a detailed view of regional variations. The integrated framework combines spatiotemporal analysis, predictive scenario simulation, and importance-performance analysis to quantify and strategize urban impacts on ESs.

View Article and Find Full Text PDF

Impact of civil war on the land cover in Myanmar.

Environ Monit Assess

January 2025

College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.

Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.

View Article and Find Full Text PDF

Objectives: To assess the geographical equity in Ethiopian infants' exclusive breastfeeding at 5 months and dietary diversity at 12 months and whether social factors explained the spatial inequities.

Design: Secondary analysis of a birth cohort study.

Setting: Analysis of data from the Ethiopian Performance Monitoring for Action panel study conducted from July 2020 to August 2021 in five regions (ie, Oromia, Amhara, Afar and Southern Nations, Nationalities and Peoples regions and the Addis Ababa City administration).

View Article and Find Full Text PDF

Prevalence of lipophilic phycotoxins with different forms in the benthic environments of a typical mariculture bay.

Mar Environ Res

December 2024

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.

Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity.

View Article and Find Full Text PDF

Accelerated stochastic processes of plankton community assembly due to tidal restriction by seawall construction in the Yangtze River Estuary.

Mar Environ Res

December 2024

School of Life Sciences, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education and Shanghai Science and Technology Committee, Shanghai, China. Electronic address:

Seawall construction has complex ecological impacts. However, the ecological mechanisms within plankton communities under tidal restriction resulting from seawall construction remain unexplored. Using environmental DNA (eDNA) metabarcoding, this study examined the impact of seawall construction on the assembly process of planktonic eukaryote and bacteria communities from the unrestricted area and the tide-restricted area in the Chongming Dongtan Nature Reserve of Yangtze River Estuary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!