The Crystal Violet (CV) dye represented one of the major triphenylmethane dyes used in textile-processing and some other industrial processes. Various metals doped titanium dioxide (TiO(2)) photocatalysts have been studied intensively for the photodegradation of dye in wastewater treatment. In order to understand the mechanistic detail of the metal dosage on the activities enhancement of the TiO(2) based photocatalyst, this study investigated the CV photodegradation reactions under UV light irradiation using a Pt modified TiO(2) photocatalyst. The results showed that Pt-TiO(2) with 5.8% (W/W) Pt dosage yielded optimum photocatalytic activity. Also the effect of pH value on the CV degradation was well assessed for their product distributions. The degradation products and intermediates were separated and characterized by HPLC-ESI-MS and GC-MS techniques. The results indicated that both the N-de-methylation reaction and the oxidative cleavage reaction of conjugated chromophore structure occurred, but with significantly different intermediates distribution implying that Pt doped TiO(2) facilitate different degradation pathways compared to the P25-TiO(2) system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2010.09.022 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.
View Article and Find Full Text PDFImmunol Rev
March 2025
Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, Virginia, USA.
A robust innate immune response is essential in combating viral pathogens. However, it is equally critical to quell overzealous immune signaling to limit collateral damage and enable inflammation resolution. Pattern recognition receptors are critical regulators of these processes.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Jadavpur University, Kolkata 700032, India.
2-Arylbenzoxazinone undergoes direct -C-H thiolation by using diaryl disulfide in the presence of a Ru(II)-phosphine catalytic system and an Ag additive. The protocol has been generalized with benzoxazinone substrates having different substituents and a series of disulfides. -Selenylation has also been performed successfully using diphenyl diselenide under similar catalytic conditions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Concern over nanoplastic contamination of wetland ecosystems has been increasing. However, little is known about the effect of photoaging on the distribution and biological response of the nanoplastics. Here, palladium-labeled polystyrene nanoplastics (PS-Pd NPs) at 0.
View Article and Find Full Text PDFAutophagy
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
Glia contribute to the neuropathology of Parkinson disease (PD), but how they react opposingly to be beneficial or detrimental under pathological conditions, like promoting or eliminating SNCA/α-syn (synuclein alpha) inclusions, remains elusive. Here we present evidence that aux (auxilin), the homolog of the PD risk factor GAK (cyclin G associated kinase), regulates the lysosomal degradation of SNCA/α-syn in glia. Lack of glial GAK/aux increases the lysosome number and size, regulates lysosomal acidification and hydrolase activity, and ultimately blocks the degradation of substrates including SNCA/α-syn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!