Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation--a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of the VTKHLNQISQSY peptide (VTK peptide) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled phosphorylated VTK peptide (pVTK) did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral-binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion, phosphorylation of serine residues increases peptide specificity for bone-like mineral, whose adsorption is determined primarily by sequence composition and net charge as opposed to sequence order. However, sequence order in addition to net charge modulates the mineralization of osteoblast cultures. The ability of such peptides to inhibit mineralization has potential utility in the management of pathologic calcification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976791PMC
http://dx.doi.org/10.1016/j.biomaterials.2010.08.064DOI Listing

Publication Analysis

Top Keywords

bone-like mineral
16
sequence order
16
peptide
14
net charge
12
vtk peptide
12
sequence
9
apatite-binding peptide
8
charge distribution
8
sequence composition
8
peptide affinity
8

Similar Publications

Mesoporous Lanthanum-Doped Magnesium Phosphate Nanopowders Promote Healing of Critical-Size Bone Defects: An In Vivo Study.

J Biomed Mater Res B Appl Biomater

January 2025

Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt.

Treating severe bone deformities and abnormalities continues to be a major clinical hurdle, necessitating the adoption of suitable materials that can actively stimulate bone regeneration. Magnesium phosphate (MP) is a material that has the ability to stimulate the growth of bones. The current study involved the synthesis of mesoporous MP and lanthanum (La)-doped nanopowders using a chemical precipitation approach.

View Article and Find Full Text PDF

Purpose: To evaluate the effectiveness of COAp granules in the mandibular bone defects by using computed tomography (CT) images.

Methods: This study was retrospective case series of mandibular bone defect reconstruction using COAp granules. Six patients with jawbone cysts treated by simultaneous grafting COAp granules after cyst enucleation were enrolled.

View Article and Find Full Text PDF

KDM6B-Mediated HADHA Demethylation/Lactylation Regulates Cementogenesis.

J Dent Res

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Cementum, a bone-like tissue, is an essential component of periodontium, and periodontitis can lead to degenerative changes in the cementum, eventually resulting in tooth loss. The therapeutic strategy for advanced periodontitis is to achieve periodontal regeneration, of which cementum regeneration is a key criterion. Cementoblasts are responsible for cementogenesis, and their mineralization counts in cementum regeneration.

View Article and Find Full Text PDF

Biomimetic mineralization of collagen from fish scale to construct a functionally gradient lamellar bone-like structure for guided bone regeneration.

Int J Biol Macromol

November 2024

Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China. Electronic address:

Article Synopsis
  • The study addresses challenges in guided bone regeneration (GBR) membranes, focusing on integrating mechanical properties with degradation rates to treat critical bone defects.
  • Researchers developed a new GBR membrane inspired by fish scales, using epigallocatechin gallate and biomimetic mineralization, resulting in a structure similar to natural bone.
  • The newly created membrane demonstrated excellent mechanical and biological properties, promoting bone repair and regeneration in both laboratory cell cultures and animal models, showcasing its potential for clinical applications.
View Article and Find Full Text PDF

A Novel Biomineralized Collagen Liquid Crystal Hydrogel Possessing Bone-like Nanostructures by Complete In Vitro Fabrication.

Gels

August 2024

National Engineering Research Center for Biomaterials (NERCB), College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

The microstructure of bone consists of nano-hydroxyapatite (nano-HA) crystals aligned within the interspaces of collagen fibrils. To emulate this unique microstructure of bone, this work applied two biomimetic techniques to obtain bone-like microstructures in vitro, that is, combining the construction of collagen liquid crystal hydrogel (CLCH) with the application of a polymer-induced liquid precursor (PILP) mineralization process. Upon the elevation of pH, the collagen macromolecules within the collagen liquid crystal (CLC) were activated to self-assemble into CLCH, whose fibrils packed into a long and dense fiber bundle in high orientation, emulating the dense-packed matrix of bone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!