Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line.

Cancer Sci

Liver Cancer Institute and Zhongshan Hospital, Institutes of Biomedical Science, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, China.

Published: December 2010

The effects of mesenchymal stem cells (MSC) on the growth and metastasis of human malignancies including hepatocellular carcinoma (HCC) are controversial, and the underlying mechanisms are not yet understood. The aim of this study was to explore the role of MSC in the progression of HCC. We investigated the effect of MSC on in vitro proliferation and invasion and in vivo tumor growth and pulmonary metastasis of MHCC97-H HCC cells with a high metastatic potential. The mRNA and protein levels of transforming growth factor-beta 1 (TGFβ1) and MMP, and their association with the effects of MSC on HCC cells were also evaluated. Co-culture of MHCC97-H cells with MSC conditioned medium significantly enhanced in vitro proliferation but inhibited invasiveness. Following MSC treatment of a nude mouse model bearing human HCC, the MSC were predominantly located in the HCC tissues. Compared with controls, MSC-treated mice exhibited significantly larger tumors (3080.51 ± 1234.78 mm(3) vs 2223.75 ± 1000.60 mm(3), P = 0.045), but decreased cellular numbers of lung metastases (49.75 ± 18.86 vs 227.22 ± 74.67, P = 0.046). Expression of TGFβ1 and MMP-2 was significantly downregulated in the MSC-treated HCC cells. TGFβ siRNA concurrently downregulated expression of TGFβ and MMP-2 in HCC cells and blocked the MSC-induced proliferation and invasiveness of MHCC97-H cells. The MSC enhanced tumor growth but significantly inhibited the invasiveness and metastasis of HCC, possibly through downregulation of TGFβ1. These findings suggest that MSC could be useful in controlling metastatic recurrence of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159711PMC
http://dx.doi.org/10.1111/j.1349-7006.2010.01738.xDOI Listing

Publication Analysis

Top Keywords

hcc cells
16
cells msc
12
hcc
10
msc
9
mesenchymal stem
8
cells
8
stem cells
8
hepatocellular carcinoma
8
vitro proliferation
8
tumor growth
8

Similar Publications

The Role of Sulfatides in Liver Health and Disease.

Front Biosci (Landmark Ed)

January 2025

Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.

Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.

View Article and Find Full Text PDF

Rhoifolin Suppresses Cell Proliferation and Induces Apoptosis in Hepatocellular Carcinoma Cells In Vitro and In Vivo.

Pharmaceuticals (Basel)

January 2025

Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

Hepatocellular carcinoma (HCC) is the most prevalent malignant tumor, ranking fifth in terms of fatality with poor prognosis and a low survival rate. Rhoifolin (ROF), a flavonoid constituent, has previously been shown to suppress the proliferation of breast and pancreatic cancer cells. However, its inhibitory effect on HCC has remained unexplored.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) cells critically depend on PARP1 and CHK1 activation for survival. Combining the PARP inhibitor (PARPi) olaparib with a CHK1 inhibitor (MK-8776, CHK1i) produced a synergistic effect, reducing cell viability and inducing marked oxidative stress and DNA damage, particularly in the HepG2 cells. This dual treatment significantly increased apoptosis markers, including γH2AX and caspase-3/7 activity.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs).

View Article and Find Full Text PDF

The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!