Molecular chaperones as rational drug targets for Parkinson's disease therapeutics.

CNS Neurol Disord Drug Targets

Department of Neurology, Massachusetts General Hospital, Mass General Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA 02129, USA.

Published: December 2010

Parkinson's disease is a neurodegenerative movement disorder that is caused, in part, by the loss of dopaminergic neurons within the substantia nigra pars compacta of the basal ganglia. The presence of intracellular protein aggregates, known as Lewy bodies and Lewy neurites, within the surviving nigral neurons is the defining neuropathological feature of the disease. Accordingly, the identification of specific genes mutated in families with Parkinson's disease and of genetic susceptibility variants for idiopathic Parkinson's disease has implicated abnormalities in proteostasis, or the handling and elimination of misfolded proteins, in the pathogenesis of this neurodegenerative disorder. Protein folding and the refolding of misfolded proteins are regulated by a network of interactive molecules, known as the chaperone system, which is composed of molecular chaperones and co-chaperones. The chaperone system is intimately associated with the ubiquitin-proteasome system and the autophagy-lysosomal pathway which are responsible for elimination of misfolded proteins and protein quality control. In addition to their role in proteostasis, some chaperone molecules are involved in the regulation of cell death pathways. Here we review the role of the molecular chaperones Hsp70 and Hsp90, and the cochaperones Hsp40, BAG family members such as BAG5, CHIP and Hip in modulating neuronal death with a focus on dopaminergic neurodegeneration in Parkinson's disease. We also review current progress in preclinical studies aimed at targetting the chaperone system to prevent neurodegeneration. Finally, we discuss potential future chaperone-based therapeutics for the symptomatic treatment and possible disease modification of Parkinson's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364514PMC
http://dx.doi.org/10.2174/187152710793237386DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
24
molecular chaperones
12
misfolded proteins
12
chaperone system
12
disease
8
elimination misfolded
8
parkinson's
6
chaperones rational
4
rational drug
4
drug targets
4

Similar Publications

Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.

View Article and Find Full Text PDF

Progressive supranuclear palsy: an updated approach on diagnosis, treatment, risk factors and outlook in Mexico.

Gac Med Mex

January 2025

Laboratorio de Reprogramación Celular y Enfermedades Crónico-Degenerativas, Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Progressive supranuclear palsy (PSP) is a rare, atypical parkinsonism, characterized by the presence of intracerebral tau protein aggregates and determined by a wide spectrum of clinical features. The definitive diagnosis is postmortem and is identified through the presence of neuronal death, gliosis, and aggregates of the tau protein presented in the form of neurofibrillary tangles (MNF) with a globose appearance in regions such as the subthalamic nucleus, the substantia nigra, and the globus pallidus The findings in ancillary imaging studies, as well as fluids biomarkers, are not sufficient to support diagnosis of PSP but are used to rule out similar pathologies because there are still no specific or validated biomarkers for this disease. The current treatment of PSP is focused on reducing symptoms, although emerging therapies seek to counteract its pathophysiological mechanisms.

View Article and Find Full Text PDF

This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.

View Article and Find Full Text PDF

Purpose: The dentato-rubro-thalamo-cortical tract (DRTC) is considered to play a crucial role across tremor disorders including tremor dominant Parkinson's disease (TDPD) and essential tremor plus (ETP). This study aims to comprehensively evaluate microstructural integrity of the DRTC using single-compartment, i.e.

View Article and Find Full Text PDF

Cellular Senescence in Glial Cells: Implications for Multiple Sclerosis.

J Neurochem

January 2025

Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.

Aging is the most common risk factor for Multiple Sclerosis (MS) disease progression. Cellular senescence, the irreversible state of cell cycle arrest, is the main driver of aging and has been found to accumulate prematurely in neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Cellular senescence in the central nervous system of MS patients has recently gained attention, with several studies providing evidence that demyelination induces cellular senescence, with common hallmarks of p16INK4A and p21 expression, oxidative stress, and senescence-associated secreted factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!