Resonance Raman spectra were acquired for thiophene in cyclohexane solution with 239.5 and 266 nm excitation wavelengths that were in resonance with ∼240 nm first intense absorption band. The spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion mostly along the reaction coordinates of six totally symmetry modes and three nontotally symmetry modes. The appearance of the nontotally symmetry modes, the C-S antisymmetry stretch +C-C=C bend mode ν(21)(B(2)) at 754 cm(-1) and the H(7)C(3)-C(4)H(8) twist ν(9)(A(2)) at 906 cm(-1), suggests the existence of two different types of vibronic-couplings or curve-crossings among the excited states in the Franck-Condon region. The electronic transition energies, the excited state structures, and the conical intersection points (1)B(1)/(1)A(1) and (1)B(2)/(1)A(1) between 2 (1)A(1) and 1 (1)B(2) or 1 (1)B(1) potential energy surfaces of thiophene were determined by using complete active space self-consistent field theory computations. These computational results were correlated with the Franck-Condon region structural dynamics of thiophene. The ring opening photodissociation reaction pathway through cleavage of one of the C-S bonds and via the conical intersection point (1)B(1)/(1)A(1) was revealed to be the predominant ultrafast reaction channel for thiophene in the lowest singlet excited state potential energy hypersurface, while the internal conversion pathway via the conical intersection point (1)B(2)/(1)A(1) was found to be the minor decay channel in the lowest singlet excited state potential energy hypersurface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3480361 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.
View Article and Find Full Text PDFBiochemistry
December 2024
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Large Stokes shift red fluorescent proteins (LSS-RFPs) are of growing interest for multicolor bioimaging applications. However, their photochemical mechanisms are not fully understood. Here, we employed the QM(XDW-CASPT2//CASSCF)/MM method to investigate the excited-state proton transfer and photoisomerization processes of the LSS-RFP mKeima starting from its cis neutral isomer.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Conjugated diene molecules are highly reactive upon photoexcitation and can relax through multiple reaction channels that depend on the position of the double bonds and the degree of molecular rigidity. Understanding the photoinduced dynamics of these molecules is crucial for establishing general rules governing the relaxation and product formation. Here, we investigate the femtosecond time-resolved photoinduced excited-state structural dynamics of ,-1,3-cyclooctadiene, a large-flexible cyclic conjugated diene molecule, upon excitation with 200 nm using mega-electron-volt ultrafast electron diffraction and trajectory surface hopping dynamics simulations.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
Nitroaromatic compounds are found in brown carbon aerosols emitted to the Earth's atmosphere by biomass burning, and are important organic chromophores for the absorption of solar radiation. Here, transient absorption spectroscopy spanning 100 fs-8 μs is used to explore the pH-dependent photochemical pathways for aqueous solutions of -nitrophenol, chosen as a representative nitroaromatic compound. Broadband ultrafast UV-visible and infrared probes are used to characterize the excited states and intermediate species involved in the multistep photochemistry, and to determine their lifetimes under different pH conditions.
View Article and Find Full Text PDFJ Phys Chem A
October 2024
Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
As a potential source of the hydroxyl (OH) radical and nitrous acid (HONO), photolysis of -nitrophenol (ONP) is of significant interest in both experimental and theoretical studies. In the atmospheric environment, the number of water molecules surrounding ONP changes with the humidity of the air, leading to an anisotropic chemical environment. This may have an impact on the photodynamics of ONP and provide a mechanism that differs from previously reported ones in the gas phase or in solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!