Download full-text PDF

Source

Publication Analysis

Top Keywords

[to compare
4
compare beta
4
beta carotene
4
carotene vitamin
4
vitamin comparing
4
comparing apples
4
apples pears!]
4
[to
1
beta
1
carotene
1

Similar Publications

Objectives: Contrast agents are frequently administered in computed tomography (CT) scans used for opportunistic screening of osteoporosis. The objective of this study is to compare the impact of contrast-related bone mineral density (BMD) increase between phantom-based and internal CT calibration techniques.

Materials And Methods: Phantom-based and internal CT calibration techniques were used to determine trabecular BMD in 93 existing clinical CT scans of the lumbar spine of 34 subjects, scanned before and after administration of contrast agents.

View Article and Find Full Text PDF

Objective: The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models.

View Article and Find Full Text PDF

Background: According to Rome IV, reflux hypersensitivity (RH) represents a novel form of functional esophageal disorder. This study was designed to compare the clinical features of three types of endoscopic-negative heartburn: RH, nonerosive reflux disease (NERD), and functional heartburn (FH).

Methods: Patients with heartburn in a medical center from 01/01/2017 to 10/31/2021 were included.

View Article and Find Full Text PDF

This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency.

View Article and Find Full Text PDF

Purpose: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glaucoma as Mills criteria using only the pattern deviation (PD) plots. The DL model results were compared with a machine learning (ML) classifier trained on conventional VF parameters.

Methods: A total of 265 PD plots and 265 numerical datasets of Humphrey 24-2 VF images were collected from 119 normal and 146 glaucomatous eyes to train the DL models to classify the images into four groups: normal, early glaucoma, moderate glaucoma, and advanced glaucoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!