The chronic effects of neonatal alloxan-induced diabetes mellitus on ventricular myocyte shortening and cytosolic Ca2+.

Mol Cell Biochem

Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE.

Published: January 2011

Diabetes mellitus is a serious global health problem, and cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. The chronic effects of neonatal alloxan- (ALX) induced diabetes mellitus on ventricular myocyte contraction and intracellular Ca(2+) transport have been investigated. Ventricular myocyte shortening was measured with a video edge detection system and intracellular Ca(2+) was measured in fura-2 loaded cells by fluorescence photometry. Diabetes was induced in 5-day old male Wistar rats by a single intraperitoneal injection of ALX (200 mg/kg body weight). Experiments were performed 12 months after ALX treatment. Fasting blood glucose was elevated and blood glucose at 60, 120 and 180 min after a glucose challenge (2 g/kg body weight, intraperitoneal) was elevated in diabetic rats compared to age-matched controls. Amplitude of shortening was significantly (P < 0.05) reduced in electrically stimulated myocytes from diabetic hearts (5.70 ± 0.24%) compared to controls (6.48 ± 0.28%). Amplitude of electrically evoked Ca(2+) transients was also significantly (P < 0.05) reduced in myocytes from diabetic hearts (0.11 ± 0.01 fura-2 ratio units) compared to controls (0.15 ± 0.01 fura-2 ratio units). Fractional sarcoplasmic reticulum Ca(2+) release was not significantly (P > 0.05) altered in myocytes from diabetic heart (0.70 ± 0.03 fura-2 ratio units) compared to controls (0.72 ± 0.03 fura-2 ratio units). Amplitude of caffeine-stimulated Ca(2+) transients was significantly (P < 0.05) reduced in myocytes from diabetic hearts (0.43 ± 0.02 fura-2 ratio units) compared to controls (0.51 ± 0.03 fura-2 ratio units). Area under the caffeine-evoked Ca(2+) transient was significantly (P < 0.05) reduced in myocytes from diabetic heart (0.77 ± 0.06 Vsec) compared to controls (1.14 ± 0.12 Vsec). Intracellular Ca(2+) refilling rate during electrical stimulation following application of caffeine was significantly (P < 0.05) slower in myocytes from diabetic heart (0.013 ± 0.001 V/sec) compared to controls (0.031 ± 0.007 V/sec). Depressed shortening may be partly attributed to depressed sarcoplasmic reticulum Ca(2+) transport in myocytes from neonatal ALX-induced diabetic rat heart.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-010-0613-4DOI Listing

Publication Analysis

Top Keywords

myocytes diabetic
24
compared controls
24
fura-2 ratio
24
ratio units
24
005 reduced
16
diabetes mellitus
12
ventricular myocyte
12
intracellular ca2+
12
diabetic hearts
12
reduced myocytes
12

Similar Publications

The Gut Microbiota-Related Antihyperglycemic Effect of Metformin.

Pharmaceuticals (Basel)

January 2025

Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland.

It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications.

View Article and Find Full Text PDF

Obesity leads to a chronic inflammatory state throughout the body, with increased infiltration of immune cells and inflammatory factors in skeletal muscle tissue, and, at the same time, the level of intracellular mitochondrial oxidative stress rises. Meanwhile, obesity is closely related to the development of skeletal muscle fibrosis and can affect the metabolic function of skeletal muscle, triggering metabolic disorders such as insulin resistance (IR) and type 2 diabetes (T2D). However, whether there is a mutual regulatory effect between the two pathological states of inflammation and fibrosis in obese skeletal muscle and the specific molecular mechanisms have not been fully clarified.

View Article and Find Full Text PDF

Role of Ciliary Neurotrophic Factor in Angiotensin II-Induced Hypertension.

Hypertension

January 2025

Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).

Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.

View Article and Find Full Text PDF

Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice.

Food Res Int

February 2025

Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:

Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).

View Article and Find Full Text PDF

Skeletal muscle (SKM) has crucial roles in locomotor activity and posture within the body and also functions have been recognized as an actively secretory organ. Numerous bioactive molecules are secreted by SKM and transported by extracellular vesicles (EVs), a novel class of mediators of communication between cells and organs that contain various types of cargo molecules including lipids, proteins and nucleic acids. SKM-derived EVs (SKM-EVs) are intercellular communicators with significant roles in the crosstalk between SKM and other organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!