Femtosecond mode-locked Tm(3+) and Tm(3+)-Ho(3+) doped 2 μm glass lasers.

Opt Express

Scottish Universities Physics Alliance, J. F. Allen School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, Scotland, UK.

Published: October 2010

We report on the spectroscopic characterization, continuous-wave and continuous wave mode-locked laser performance of bulk Tm(3+):GPNG fluorogermanate and Tm(3+)-Ho(3+):TZN tellurite glass lasers around 2 μm. A slope efficiency of up to 50% and 190 mW of output power were achieved from the Tm(3+):GPNG laser at 1944 nm during continuous wave operation. The Tm(3+)-Ho(3+):TZN laser produced a 26% slope efficiency with a maximum output power of 74 mW at 2012 nm. The Tm(3+):GPNG produced near-transform-limited pulses of 410 fs duration centered at 1997 nm with up to 84 mW of average output power and repetition frequency of 222 MHz when was passively modelocked using an ion-implanted InGaAsSb-based quantum well SESAM. Using the same SESAM, the Tm(3+)-Ho(3+):TZN laser generated 630-fs pulses with 38 mW of average output power at 2012 nm. Data analysis of pulses at different intracavity pulse energies provided an estimation of n(2) at 2012 nm of 2.9 × 10(-15) cm(2)/W for the Tm(3+)-Ho(3+):TZN.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.022090DOI Listing

Publication Analysis

Top Keywords

output power
16
glass lasers
8
continuous wave
8
slope efficiency
8
tm3+-ho3+tzn laser
8
power 2012
8
average output
8
femtosecond mode-locked
4
mode-locked tm3+
4
tm3+ tm3+-ho3+
4

Similar Publications

This study examined internal, external training loads, internal:external ratios, and aerobic adaptations for acute and short-term chronic repeated-sprint training (RST) with blood flow restriction (BFR). Using randomised crossover (Experiment A) and between-subject (Experiment B) designs, 15 and 24 semi-professional Australian footballers completed two and nine RST sessions, respectively. Sessions comprised three sets of 5-7 × 5-second sprints and 25 seconds recovery, with continuous BFR (45% arterial occlusion pressure) or without (Non-BFR).

View Article and Find Full Text PDF

Analysis and prediction of atmospheric ozone concentrations using machine learning.

Front Big Data

January 2025

Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland.

Atmospheric ozone chemistry involves various substances and reactions, which makes it a complex system. We analyzed data recorded by Switzerland's National Air Pollution Monitoring Network (NABEL) to showcase the capabilities of machine learning (ML) for the prediction of ozone concentrations (daily averages) and to document a general approach that can be followed by anyone facing similar problems. We evaluated various artificial neural networks and compared them to linear as well as non-linear models deduced with ML.

View Article and Find Full Text PDF

Synchronously degradation of biogas slurry and decarbonization of biogas using microbial fuel cells.

J Environ Sci Health A Tox Hazard Subst Environ Eng

January 2025

School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China.

Two-chamber microbial fuel cell (MFC) with biogas slurry (BS) of corn stover as the anode substrate and as the cathode substrate was investigated to solve the problem of the accumulation of wastewater generated from biogas plants and to achieve low-cost separation of CO from biogas. A simple two-compartment MFC was constructed using biocatalysis and inexpensive materials without expensive catalysts. The performance of MFC (X1-W, Y1-W, Z1-W) with different biogas solution concentrations as anode substrate and MFC (X2-C, Y2-C, Z2-C) with as biocathode were compared, respectively.

View Article and Find Full Text PDF

Statistical-based detection of pilot contamination attack for NOMA in 5G networks.

Sci Rep

January 2025

Department of Information Technology, Faculty of Computers and Information, Assiut University, Assiut, Assiut, 71515, Egypt.

Fifth-generation (5G) communication technologies, such as millimeter wave communication, massive multiple-input-multiple-output and non-orthogonal-multiple-access (NOMA) are playing a pivotal role in promoting the modern applications of the Internet-of-Things. Using non-orthogonal resource allocation, NOMA can increase spectrum efficiency and achieve wide connectivity with low transmission delay and signaling cost. Despite the high potential of NOMA in 5G communications, NOMA is susceptible to a pilot contamination attack (PCA), in which an attacker resents the same pilot signals as authorized users.

View Article and Find Full Text PDF

Powertrain configuration design for two mode power split hybrid electric vehicle.

Sci Rep

January 2025

Faculty of Engineering Sciences Institute of Mechatronics and System Dynamics, University of Duisburg-Essen, 47057, Duisburg, Germany.

Hybrid transmissions have attracted great attention in the automotive industry due to their energy-saving, low-emission properties, and have become a focus of research and development. This paper presents a new method to design the configuration of two mode power split hybrid transmission using the combination of the simple planetary gear trains (PGT). For this purpose, the hybrid transmission structure is divided into two substructures, which achieve different operation modes respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!