We present a theoretical analysis describing the spectral dependence of phase noise in one-pump fiber parametric amplifiers and converters. The analytical theory is experimentally validated and found to have high predictive accuracy. The implications related to phase-coded sensing and communications systems are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.18.021449 | DOI Listing |
J Voice
January 2025
Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery Department, Universidade Estadual Paulista Julio de Mesquita Filho, Botucatu Medical School, UNESP, São Paulo, Brazil.
Introduction: Vocal symptoms are frequent in patients with coronavirus disease 2019 (COVID-19) and may occur during or after infection.
Objective: To conduct a descriptive review on the topic "dysphonia and COVID-19" in order to alert specialists to these symptoms associated with the virus and sequelae.
Methodology: A literature review was carried out in the main databases: Web of Science, PubMed, Google Scholar, and Scopus, between April 2020 and April 2024 using descriptors that related COVID-19 or severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) to voice disorders.
Anal Chem
January 2025
International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas.
View Article and Find Full Text PDFJ Magn Reson
January 2025
Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA. Electronic address:
Harmonizing and validating Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of Xe observed from human subjects in vivo and 2) has short enough T times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase Xe phantoms yielding chemical shifts of 212.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Physics, Zhejiang University, Hangzhou, 310058, PR China.
The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!