A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultra-low power modulators using MOS depletion in a high-Q SiO₂-clad silicon 2-D photonic crystal resonator. | LitMetric

In modulators that rely on changing refractive index, switching energy is primarily dependent upon the volume of the active optical mode. Photonic crystal microcavities can exhibit extremely small mode volumes on the order of a single cubic wavelength with Q values above 10(6). In order to be useful for integration, however, they must be embedded in oxide, which in practice reduces Q well below 10(3), significantly increasing switching energy. In this work we show that it is possible to create a fully oxide-clad microcavity with theoretical Q on the order of 10(5). We further show that by using MOS charge depletion this microcavity can be the basis for a modulator with a switching energy as low as 1 fJ/bit.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.019129DOI Listing

Publication Analysis

Top Keywords

switching energy
12
photonic crystal
8
ultra-low power
4
power modulators
4
modulators mos
4
mos depletion
4
depletion high-q
4
high-q sio₂-clad
4
sio₂-clad silicon
4
silicon 2-d
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!