Typical femtosecond pulse compression of deep ultraviolet radiation consists of prism or diffraction grating pair chirp compensation but, both techniques introduce higher-order dispersion, spatial-spectral beam distortion and poor transmission. While negatively chirped dielectric mirrors have been used to compress near infrared and visible pulses to <10 fs, there has been no extension of this technique below 300 nm. We demonstrate the use of Gires-Tournois interferometer (GTI) negative dispersion multilayer dielectric mirrors designed for pulse compression in the deep ultraviolet region. GTI mirror designs are more robust than chirped mirrors and, can provide sufficient bandwidth for the compression of sub-30-fs pulses in the UV wavelength range. Compression of a 5 nm (FWHM) pulse centered between 266 and 271 nm to 30 fs has been achieved with less pulse broadening due to high-order dispersion and no noticeable spatial deformation, thereby improving the resolution of ultrafast techniques used to study problems such as fast photochemical reaction dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.018615DOI Listing

Publication Analysis

Top Keywords

deep ultraviolet
8
pulse compression
8
gires-tournois interferometer
4
interferometer type
4
type negative
4
negative dispersion
4
dispersion mirrors
4
mirrors deep
4
ultraviolet pulse
4
compression typical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!