A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CLP-1 associates with MyoD and HDAC to restore skeletal muscle cell regeneration. | LitMetric

CLP-1 associates with MyoD and HDAC to restore skeletal muscle cell regeneration.

J Cell Sci

Department of Cell Biology, Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical Center, Brooklyn, New York, NY 11203, USA.

Published: November 2010

Emerging evidence suggests that eukaryotic gene transcription is regulated primarily at the elongation stage by association and dissociation of the inhibitory protein cardiac lineage protein 1 (CLP-1/HEXIM1) from the positive transcription elongation factor b (P-TEFb) complex. It was reported recently that P-TEFb interacts with skeletal muscle-specific regulatory factor, MyoD, suggesting a linkage between CLP-1-mediated control of transcription and skeletal myogenesis. To examine this, we produced CLP-1 knockdown skeletal muscle C2C12 cells by homologous recombination, and demonstrated that the C2C12 CLP-1 +/- cells failed to differentiate when challenged by low serum in the medium. We also showed that CLP-1 interacts with both MyoD and histone deacetylases (HDACs) maximally at the early stage of differentiation of C2C12 cells. This led us to hypothesize that the association might be crucial to inhibition of MyoD-target proliferative genes. Chromatin immunoprecipitation analysis revealed that the CLP-1/MyoD/HDAC complex binds to the promoter of the cyclin D1 gene, which is downregulated in differentiated muscle cells. These findings suggest a novel transcriptional paradigm whereby CLP-1, in conjunction with MyoD and HDAC, acts to inhibit growth-related gene expression, a requirement for myoblasts to exit the cell cycle and transit to myotubes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964110PMC
http://dx.doi.org/10.1242/jcs.073387DOI Listing

Publication Analysis

Top Keywords

myod hdac
8
skeletal muscle
8
c2c12 cells
8
clp-1
5
clp-1 associates
4
myod
4
associates myod
4
hdac restore
4
skeletal
4
restore skeletal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!