While the ability of stem cells to switch lineages has been suggested, the route(s) through which this may happen is unclear. To date, the best characterized adult stem cell population considered to possess transdifferentiation capacity is BM-MSCs (bone marrow mesenchymal stem cells). We investigated whether BM-MSCs that had terminally differentiated into the neural or epithelial lineage could be induced to transdifferentiate into the other phenotype in vitro. Our results reveal that neuronal phenotypic cells derived from adult rat bone marrow cells can be switched to epithelial phenotypic cells, or vice versa, by culture manipulation allowing the differentiated cells to go through, first, dedifferentiation and then redifferentiation to another phenotype. Direct transdifferentiation from differentiated neuronal or epithelial phenotype to the other differentiated phenotype cannot be observed even when appropriate culture conditions are provided. Thus, dedifferentiation appears to be a prerequisite for changing fate and differentiating into a different lineage from a differentiated cell population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CBI20100516 | DOI Listing |
Cells
December 2024
Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany.
Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China. Electronic address:
Renal interstitial fibrosis is the main factor determining chronic kidney disease (CKD) progression, and renal tubular epithelial cells are the key drivers of this pathological process. Herein, we revealed significantly increased ubiquitin-specific peptidase 10 (USP10) expression in the kidney tissues of both patients with CKD and mice induced by unilateral ureteral obstruction, as well as in transforming growth factor-beta 1 (TGFβ1)-induced renal tubular epithelial cells. In vivo, treatment with the USP10 small molecule inhibitor Spautin-1, which inhibits its deubiquitinating activity, weakened renal interstitial fibrosis progression and alleviated the subsequent inflammatory response and oxidative stress in male mice.
View Article and Find Full Text PDFJ Endocrinol Invest
January 2025
Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Purpose: Long noncoding RNAs (lncRNAs) play crucial regulatory roles in the tumorigenesis and progression of various cancers. However, the functional roles of lncRNAs in papillary thyroid cancer (PTC) remain unclear. In this study, we investigated the functional role of the lncRNA FAM111A-DT in PTC progression and the underlying mechanisms.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
Background: Early‐onset Alzheimer’s disease (EOAD) is a complex disease that occurs at an early age at onset (AAO) before 65 years, constituting 5‐6% of all AD cases and remains poorly understood. Patient‐derived induced pluripotent stem cells (iPSCs) have been used to model different forms of EOAD that display heterogeneous disease mechanisms.
Method: We examined iPSC‐derived neurons from both familial EOAD harboring mutations in , and non‐familial EOAD patients at an early AAO.
BMC Biol
January 2025
Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!