Increased survival and reinnervation of cervical motoneurons by riluzole after avulsion of the C7 ventral root.

J Neurotrauma

Laboratory of Neuromorphology, Department of Ophthalmology, Faculty of General Medicine, University of Szeged, Szeged, Hungary.

Published: December 2010

Although adult motoneurons do not die if their axons are injured at some distance from the cell body, they are unable to survive injury caused by ventral root avulsion. Some of the injured motoneurons can be rescued if the ventral root is re-inserted into the spinal cord. Brachial plexus injuries that involve the complete or partial avulsion of one or more cervical ventral roots can be treated successfully only if satisfactory numbers of motoneurons remain alive following such an injury at the time of reconstructive surgery. Here we investigated the various strategies that could be used to rescue injured rat cervical motoneurons. The seventh cervical ventral root (C7) was avulsed and various therapeutic approaches were applied to induce motoneuronal survival and regeneration. Avulsion of the root without reimplantation resulted in very low numbers of surviving motoneurons (65 ± 8 SEM), while treatment of the injured motoneurons with riluzole resulted in high numbers of surviving motoneurons (637 ± 26 SEM). When the C7 ventral root was reimplanted or a peripheral nerve implant was used to guide the regenerating axons to a muscle, considerable numbers of motoneurons regenerated their axons (211 ± 15 SEM and 274 ± 28 SEM, respectively). Much greater numbers of axons regenerated when reimplantation was followed by riluzole treatment (573 ± 9 SEM). These results show that injured adult motoneurons can be rescued by riluzole treatment, even if they cannot regenerate their axons. Reinnervation of the peripheral targets can also be further improved with riluzole treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136727PMC
http://dx.doi.org/10.1089/neu.2010.1445DOI Listing

Publication Analysis

Top Keywords

ventral root
20
riluzole treatment
12
motoneurons
10
cervical motoneurons
8
motoneurons riluzole
8
adult motoneurons
8
injured motoneurons
8
motoneurons rescued
8
cervical ventral
8
numbers motoneurons
8

Similar Publications

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

Background: Post-traumatic pseudomeningoceles are common findings after a brachial or lumbar plexus trauma, in particular after nerve root avulsion. Unlike meningoceles, pseudomeningoceles are CSF full-filled cysts confined by the paraspinous soft tissue, along the normal nerve course, in communication with the spinal subarachnoid spaces. Normally no more than a radiological finding at MRI, in rare instances they might be symptomatic due to their size or might constitute an obstacle during a reconstructive surgery.

View Article and Find Full Text PDF

Neuraxial Anesthesia and Risk of Root Damage: A 3D Ex Vivo Study.

NeuroSci

December 2024

Laboratory of Surgical Neuroanatomy (LSNA), Human Anatomy and Embryology Unit, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain.

Cauda equina nerve roots may become damaged during neuraxial anesthesia, and post-puncture headache may appear in the case of cerebrospinal fluid leakage if needle tips are deformed due to bone contact when several attempts are needed. Our aim was to verify the correlation between skin-transverse process distance (st) and skin-dural sac distance (d) for calculation of optimal angles in a free visual guide and as a reference for the maximal depth to be traversed by the needle. Randomly selected ex vivo samples ( = 10) were flexed to reproduce the position of the lumbosacral spine during spinal anesthesia.

View Article and Find Full Text PDF

Spinal schwannomas are benign, slow-growing tumors originating from Schwann cells, constituting 25 to 30% of primary spinal neoplasms and most frequently arise from sensory nerve roots in the cervical or thoracic spine. 1 2 3 Although generally nonaggressive, their growth can result in significant neurological deficits due to compression of surrounding structures such as the spinal cord or nerve roots. 4 5 Patients commonly present with localized pain, muscle weakness, and sensory disturbances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!