We report that bilateral, excitoxic lesions of the perirhinal cortex attenuate rats' familiarity-based stimulus generalization. After surgery, rats were preexposed either to 2 auditory stimuli (A and B) or to only 1 auditory stimulus (B). Following preexposure, all rats received pairings of A and a footshock before assessment of generalized responding (conditioned suppression) to B. Sham rats' generalization was greater when preexposure was to both A and B than when preexposure was to B only. That pattern was abolished in lesioned rats, though no general deficiency was found in other measures of auditory processing. Our findings suggest that the perirhinal cortex is required for rats to encode familiarity as part of stimulus representations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/a0020900 | DOI Listing |
Cell Rep
January 2025
Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA. Electronic address:
Molecules
December 2024
Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland.
The N-methyl-D-aspartate (NMDA) glutamate receptor is a major target of ethanol, and it is implicated in learning and memory formation, and other cognitive functions. Glycine acts as a co-agonist for this receptor. We examined whether Org24598, a selective inhibitor of glycine transporter1 (GlyT1), affects ethanol withdrawal-induced deficits in recognition memory (Novel Object Recognition (NOR) task) and spatial memory (Barnes Maze (BM) task) in rats, and whether the NMDA receptor glycine site participates in this phenomenon.
View Article and Find Full Text PDFbioRxiv
December 2024
University of Alabama at Birmingham, Heersink School of Medicine, Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, Birmingham, AL, United State of America.
Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD, USA. Electronic address:
The macaque cerebral cortex contains concentrations of neurons that prefer faces over inanimate objects. Although these so-called face patches are thought to be specialized for the analysis of facial signals, their exact tuning properties remain unclear. For example, what happens when an object by chance resembles a face? Everyday objects can sometimes, through the accidental positioning of their internal components, appear as faces.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Cognitive and Psychological Sciences, Brown University, Providence, Rhode Island, USA.
For most of my career, I focused on understanding how and where spatial context, the place where things happen, is represented in the brain. My interest in this began in the early 1990's, during my postdoctoral training with David Amaral, when we defined the rodent homolog of the primate parahippocampal cortex, a region implicated in processing spatial and contextual information. We parceled out the caudal portion of the rat perirhinal cortex (PER) and called it the postrhinal cortex (POR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!