Conductance fluctuation is usually unavoidable in graphene nanoribbons (GNR) due to the presence of disorder along its edges. By measuring the low-frequency noise in GNR devices, we find that the conductance fluctuation is strongly correlated with the density-of-states of GNR. In single-layer GNR, the gate-dependence of noise shows peaks whose positions quantitatively match the subband positions in the band structures of GNR. This correlation provides a robust mechanism to electrically probe the band structure of GNR, especially when the subband structures are smeared out in conductance measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl1025979 | DOI Listing |
Cureus
December 2024
Department of Orthopedic Surgery, Case Western Reserve University School of Medicine, Cleveland, USA.
Introduction: Despite progress in the representation of women in the medical profession, substantial gender disparities persist in leadership roles, particularly in clinical trials. Clinical trials are crucial to evidence-based medicine, offering visibility, career advancement, and future funding opportunities for principal investigators (PIs). However, women remain underrepresented in these roles, especially in genetics.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria.
Background: There is evidence that iron metabolism may play a role in the underlying pathophysiological mechanism of migraine. Studies using (=1/ ) relaxometry, a common MRI-based iron mapping technique, have reported increased values in various brain structures of migraineurs, indicating iron accumulation compared to healthy controls.
Purpose: To investigate whether there are short-term changes in during a migraine attack.
Heliyon
January 2025
Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
Anaerobic digestion represents an opportunity for converting organic waste (OW) into valuable products: renewable energy (biogas) and a fertilizer (digestate). However, the long-term effects of digestates on soil biota, especially microorganisms, need to be better documented to understand the impact of digestate on soil ecosystem functioning and resilience. This study assessed the cumulative effect of repeated pig slurry digestate applications on soil microbial communities over a decade, using an in-situ approach to compare digested feedstock with undigested feedstock and other fertilization treatments.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Background: Understanding brain changes in older patients with depression and their relationship with cognitive abilities may aid in the diagnosis of depression in this population. This study aimed to explore the association between brain lesions and cognitive performance in older patients with depression.
Methods: We utilized magnetic resonance imaging data from a previous study, which included older adults with and without depression.
Adv Mater
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, P. R. China.
Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!