Mechanism of catalytic cyclohydroamination by zirconium salicyloxazoline complexes.

J Am Chem Soc

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV7 4AL, UK.

Published: November 2010

The mechanism of hydroamination/cyclization of primary aminoalkenes by catalysts based on Cp*LZr(NMe(2))(2) (L = κ(2)-salicyloxazoline) is investigated in a range of kinetic, stoichiometric, and structural studies. The rate law is found to be d[substrate]/dt = k[catalyst](1)[substrate](0) for all catalysts and aminoalkenes studied. The overall rate is similar for formation of five- and six-membered rings, and a substantial KIE (k(H)/k(D)) is observed, indicating the involvement of N-H bond-breaking in a rate-determining step (RDS) which is not ring-closure. Remarkably, the reaction proceeds at the same rate in THF as it does in toluene, but added non-cyclizable amine slows the reaction, indicating that while the metal is not acting as a Lewis acid in the RDS, the activated substrate is involved. Also in contrast to other catalysts, increasing steric bulk improves the rate, and the origins of this are investigated by X-ray crystallography. Thermodynamic parameters extracted from eight independent kinetic studies indicate moderate ordering (ΔS(double dagger) = -13 to -23 cal/K·mol) and substantial overall bond disruption (ΔH(double dagger) = 17 to 21 kcal/mol) in the rate-determining transition state. Secondary amines are unreactive, as is a catalyst with a single aminolyzable site, thus excluding an amido mechanism. A catalytic cycle involving rate-determining formation of a reactive imido species is proposed. Stoichiometric steps in the process are shown to be feasible and have appropriate rates by synthetic and in situ NMR spectroscopic studies. The fate of the catalyst in the absence of excess amine (at the end of the catalytic reaction) is conversion to a metallacyclic species arising from CH activation of a peripheral substituent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja106588mDOI Listing

Publication Analysis

Top Keywords

mechanism catalytic
8
catalytic cyclohydroamination
4
cyclohydroamination zirconium
4
zirconium salicyloxazoline
4
salicyloxazoline complexes
4
complexes mechanism
4
mechanism hydroamination/cyclization
4
hydroamination/cyclization primary
4
primary aminoalkenes
4
aminoalkenes catalysts
4

Similar Publications

TiN Boosting the Oxygen Reduction Performance of Fe-N-C through the Relay-Catalyzing Mechanism for Metal-Air Batteries.

ACS Appl Mater Interfaces

January 2025

Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China.

Metal-air batteries desire highly active, durable, and low-cost oxygen reduction catalysts to replace expensive platinum (Pt). The Fe-N-C catalyst is recognized as the most promising candidate for Pt; however, its durability is hindered by carbon corrosion, while activity is restricted due to limited oxygen for the reaction. Herein, TiN is creatively designed to be hybridized with Fe-N-C (TiN/Fe-N-C) to relieve carbon corrosion and absorb more oxygen when catalyzing oxygen reduction.

View Article and Find Full Text PDF

Monolayer MoS is an effective electrocatalyst for the hydrogen evolution reaction (HER). Despite significant efforts to optimize the active sites, its catalytic performance still falls short of theoretical predictions. One key factor that has often been overlooked is the electron injection from the conductive substrate into the MoS.

View Article and Find Full Text PDF

Identifying the Structure of Two-Dimensional ACuO (A = Na, K, Cs) Film on Cu(111) with Atomic Resolution.

J Phys Chem Lett

January 2025

College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China.

The deposition of alkali metals on oxide surfaces has garnered significant interest due to their critical role in enhancing various catalytic processes. However, the atomic-scale characterization of these structures remains elusive, owing to the complex and competing interactions among the oxygen, the alkali metals, and the metal atoms within the oxides. In this work, we grew alkali metals (Na, K, Cs) on the copper oxide films on the Cu(111) surface and found the formation of hexagonally ordered monolayer films.

View Article and Find Full Text PDF

Knowledgedriven design of boron-based catalysts for oxidative dehydrogenation of propane.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, Dalian University of Technology, Dalian 116024, China.

Metal-free boron-based materials exhibit remarkable performance in oxidative dehydrogenation of propane (ODHP). Rational design of boron-based catalysts requires a systematic understanding of the underlying mechanisms to constitute a knowledge base. This work provides a comprehensive view of the reaction mechanism of the boron-based ODH reaction and discusses the key features of the reaction systems, including the inhibition of deep oxidation, high olefin selectivity, and the role of water in the ODHP reaction.

View Article and Find Full Text PDF

The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!