The dynamics of all levels were calculated numerically in the present article for Er(0.5)Yb(3):FOV oxyfluoride nanophase vitroceramics. The population dynamical processes were analyzed carefully. It was found for the first time that traditional phonon-assisted energy transfer theory of rare earth ion energy transfer can not well explain the observed experimental calibrated results, as it does not take into account the difference between Stokes and anti-Stokes process. A coefficient, the improved factor of the intensity ratio of Stokes to anti-Stokes process in quantum Raman theory compared to classical Raman theory, was introduced for the first time to successfully describe the anti-Stokes energy transfer. The theoretical improvement results are coincident with experiments very well. This improvement is very significant and indispensable when the photonics of nanomaterials is probed.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!