Models of membrane-bound Alzheimer's Abeta peptide assemblies.

Proteins

Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4258, USA.

Published: December 2010

AI Article Synopsis

  • Although amyloid beta (Aβ) peptides are crucial in Alzheimer's disease development, the specific molecular mechanisms are still unclear.
  • Aβ peptides can form potentially harmful structures in both watery and lipid environments, possibly generating ion channels that allow calcium ions to pass through membranes.
  • The proposed models suggest that these structures can create large, stable channels in membranes, which may be selective for certain metal ions and can be influenced by various compounds.

Article Abstract

Although it is clear that amyloid beta (Aβ) peptides play a pivotal role in the development of Alzheimer's disease, the precise molecular model of action remains unclear. Aβ peptide forms assemble both in aqueous solution and in lipid membranes. It has been proposed that deleterious effects occur when the peptides interact with membranes, possibly by forming Ca(2+) permeant ion channels. In the accompanying manuscript, we propose models in which the C-terminus third of six Aβ42 peptides forms a six-stranded β-barrel in highly toxic soluble oligomers. Here we extend this hypothesis to membrane-bound assemblies. In these Aβ models, the hydrophobic β-barrel of a hexamer may either reside on the surface of the bilayer, or span the bilayer. Transmembrane pores are proposed to form between several hexamers. Once the β-barrels of six hexamers have spanned the bilayer, they may merge to form a more stable 36-stranded β-barrel. We favor models in which parallel β-barrels formed by N-terminus segments comprise the lining of the pores. These types of models explain why the channels are selective for cations and how metal ions, such as Zn(2+) , synthetic peptides that contain histidines, and some small organic cations may block channels or inhibit formation of channels. Our models were developed to be consistent with microscopy studies of Aβ assemblies in membranes, one of which is presented here for the first time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976831PMC
http://dx.doi.org/10.1002/prot.22853DOI Listing

Publication Analysis

Top Keywords

models
6
models membrane-bound
4
membrane-bound alzheimer's
4
alzheimer's abeta
4
abeta peptide
4
peptide assemblies
4
assemblies clear
4
clear amyloid
4
amyloid beta
4
4

Similar Publications

The aim of this study is to determine the mediating role of moral sensitivity in the effect of nurses' professional values on missed nursing care. A descriptive and correlational study was conducted with 640 nurses working in the inpatient units of a public and a private hospital with the MISSCARE Survey-Turkish, the Moral Sensitivity Questionnaire, and the Revised Nursing Professional Values Scale. Data analyses were performed using the Statistical Package for Social Sciences 26.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Globally, more than 100 countries have adopted net-zero targets. Most studies agree on how this increases the chance of keeping end-of-century global warming below 2°C. However, they typically make assumptions about net-zero targets that do not capture uncertainties related to gas coverage, sector coverage, sinks, and removals.

View Article and Find Full Text PDF

Protocol to generate a 3D atherogenesis-on-chip model for studying endothelial-macrophage crosstalk in atherogenesis.

STAR Protoc

January 2025

Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:

The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!