Neuronal circuits involved in the middle-ear acoustic reflex.

Toxicol Sci

Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519 Vandœuvre Cédex, France.

Published: January 2011

Human and animal studies have shown that certain aromatic solvents such as toluene can cause hearing loss and can exacerbate the effects of noise. The latter effects might be due to a modification of responses of motoneurons controlling the middle-ear acoustic reflex. In the present investigation, the audition of Long-Evans rats was evaluated by measuring cubic (2f1 - f2) distortion otoacoustic emissions (f1 = 8000 Hz; f2 = 9600 Hz; f1/f2 = 1.2) prior to, during, and after activation of the middle-ear acoustic reflex. A noise suppressor was used to modify the amplitude of the 2f1 - f2 distortion otoacoustic emissions. It was delivered either contralaterally (band noise centered at 4 kHz), or ipsilaterally (3.5 kHz sine wave) to test the role played by the central auditory nuclei. This audiometric approach was used to study the physiological efficiency of the middle-ear acoustic reflex during an injection of a bolus of Intralipid (as a vehicle) containing 58.4, 87.4, or 116.2mM toluene via the carotid artery. The results showed that toluene could either increase or decrease middle-ear acoustic reflex efficiency, depending on the toluene concentration and the ear receiving noise suppressor. A new neuronal circuit of the middle-ear acoustic reflex has been proposed to explain findings obtained in this investigation. Finally, the depressing action of toluene on the central auditory nuclei driving the middle-ear acoustic reflex might explain the synergistic effects of a co-exposure to noise and aromatic solvents.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfq312DOI Listing

Publication Analysis

Top Keywords

middle-ear acoustic
28
acoustic reflex
28
aromatic solvents
8
2f1 distortion
8
distortion otoacoustic
8
otoacoustic emissions
8
noise suppressor
8
central auditory
8
auditory nuclei
8
middle-ear
7

Similar Publications

Hearing impairment in patients with rheumatoid arthritis has been underestimated for decades. Rheumatoid arthritis can affect both the middle ear (specifically, the incudomalleolar and incudostapedial joints) and inner ear (including the cochlea and acoustic nerve) simultaneously. Despite ongoing research, consensus on effective treatments for hearing impairment in these patients remains elusive.

View Article and Find Full Text PDF

: Before a cochlear implant is considered, patients undergo various audiological tests to assess their suitability. One key test measures the auditory brainstem response (ABR) to acoustic stimuli. However, in some cases, even with maximum sound stimulation, no response is detected.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the risk factors that may cause postoperative otomycosis in patients undergoing Chronic Nonsuppurative Otitis Media (CNSOM) surgery.

Methods: In this retrospective study, 409 out of 523 patients met the inclusion criteria. 44 patients diagnosed with otomycosis CNSOM were analyzed.

View Article and Find Full Text PDF

Middle Ear Mechanics in the Barn Owl.

J Morphol

January 2025

Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA.

The barn owl is a common research subject in auditory science due to its exceptional capacity for high frequency hearing and superb sound source localization capabilities. Despite longstanding interest in the auditory performance of barn owls, the function of its middle ear has attracted remarkably little attention. Here, we report the middle ear transfer function measured by laser Doppler vibrometry and direct measurements of inner ear pressures.

View Article and Find Full Text PDF

Comprehension of acoustically degraded emotional prosody in Alzheimer's disease and primary progressive aphasia.

Sci Rep

December 2024

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 1st Floor, 8-11 Queen Square, London, WC1N 3AR, UK.

Previous research suggests that emotional prosody perception is impaired in neurodegenerative diseases like Alzheimer's disease (AD) and primary progressive aphasia (PPA). However, no previous research has investigated emotional prosody perception in these diseases under non-ideal listening conditions. We recruited 18 patients with AD, and 31 with PPA (nine logopenic (lvPPA); 11 nonfluent/agrammatic (nfvPPA) and 11 semantic (svPPA)), together with 24 healthy age-matched individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!