Drug addiction processes are considered to be mainly controlled by the mesocorticolimbic dopamine system. Cannabinoids, a class of psychoactive drugs of abuse, elicit their rewarding and pharmacological effects through the endocannabinoid system. Previous research has indicated that dopaminergic neurons in the mesocorticolimbic system are also under the control of the endocannabinoid system. Recently, evidence has suggested that the endocannabinoid system may also participate in the modulation of the common reward system. The present study examined whether rimonabant, a cannabinoid CB₁ receptor antagonist, disrupts the acquisition and reinstatement of psychostimulant reward memory measured by conditioned place preference (CPP). Mice were trained to acquire methamphetamine or cocaine-induced CPP. A priming injection of methamphetamine (0.5 mg/kg, i.p.) or cocaine (5 mg/kg, i.p.) was respectively given to reinstate methamphetamine or cocaine-induced CPP after extinction. Vehicle or rimonabant (1 or 3 mg/kg, i.p.) was administered at different time-points: 30 min before each CPP training session (acquisition) or 30 min before the priming injection (reinstatement). Rimonabant at doses of 1 and 3 mg/kg significantly inhibited the acquisition of methamphetamine- and cocaine-induced CPP. At the high dose (3 mg/kg), rimonabant disrupted the reinstatement of extinguished methamphetamine- or cocaine-induced CPP. These findings indicate that cannabinoid CB₁ receptors play a major role in psychostimulant reward memory, and rimonabant may be a potential pharmacotherapy for psychostimulant addiction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2010.10.008DOI Listing

Publication Analysis

Top Keywords

cocaine-induced cpp
16
cannabinoid cb₁
12
psychostimulant reward
12
reward memory
12
endocannabinoid system
12
cb₁ receptor
8
receptor antagonist
8
acquisition reinstatement
8
reinstatement psychostimulant
8
methamphetamine cocaine-induced
8

Similar Publications

The glutamatergic system, located throughout the brain including the prefrontal cortex and nucleus accumbens, plays a critical role in reward and reinforcement processing, and mediates the psychotropic effects of addictive drugs such as cocaine. Glutamate transporters, including EAAT2/GLT-1, are responsible for removing glutamate from the synaptic cleft. Reduced expression of GLT-1 following chronic cocaine use and abstinence has been reported.

View Article and Find Full Text PDF

We have previously observed that exposed to social defeat stress are more sensitive to cocaine in the conditioned place preference (CPP) paradigm. In this context, it has been suggested that the nitric oxide (NO) pathway plays a role in the effects of stress. The present study evaluates the role of a neuronal NO synthase (nNOS) inhibitor (7-nitroindazole, 7-NI) in the short- and long-term behavioural effects of intermittent social defeat (ISD).

View Article and Find Full Text PDF

Sequential physical and cognitive training disrupts cocaine-context associations via multi-level stimulation of adult hippocampal neurogenesis.

Prog Neuropsychopharmacol Biol Psychiatry

September 2024

Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain. Electronic address:

Cocaine-related contextual cues are a recurrent source of craving and relapse. Extinction of cue-driven cocaine seeking remains a clinical challenge, and the search for adjuvants is ongoing. In this regard, combining physical and cognitive training is emerging as a promising strategy that has shown synergistic benefits on brain structure and function, including enhancement of adult hippocampal neurogenesis (AHN), which has been recently linked to reduced maintenance of maladaptive drug seeking.

View Article and Find Full Text PDF

Repeated cocaine use produces adaptations in brain function that contribute to long-lasting behaviors associated with cocaine use disorder (CUD). In rodents, the activity-regulated cytoskeleton-associated protein (Arc) can regulate glutamatergic synaptic transmission, and cocaine regulates Arc expression and subcellular localization in multiple brain regions, including the nucleus accumbens (NAc)-a brain region linked to CUD-related behavior. We show here that repeated, non-contingent cocaine administration in global Arc KO male mice produced a dramatic hypersensitization of cocaine locomotor responses and drug experience-dependent sensitization of conditioned place preference (CPP).

View Article and Find Full Text PDF

VTA glutamatergic projections to the nucleus accumbens suppress psychostimulant-seeking behavior.

Neuropsychopharmacology

November 2024

Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.

Converging evidence indicates that both dopamine and glutamate neurotransmission within the nucleus accumbens (NAc) play a role in psychostimulant self-administration and relapse in rodent models. Increased NAc dopamine release from ventral tegmental area (VTA) inputs is critical to psychostimulant self-administration and NAc glutamate release from prelimbic prefrontal cortex (PFC) inputs synapsing on medium spiny neurons (MSNs) is critical to reinstatement of psychostimulant-seeking after extinction. The regulation of the activity of MSNs by VTA dopamine inputs has been extensively studied, and recent findings have demonstrated that VTA glutamate neurons target the NAc medial shell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!