In vitro and in vivo comparison of [³H](+)-PHNO and [³H]raclopride binding to rat striatum and lobes 9 and 10 of the cerebellum: a method to distinguish dopamine D₃ from D₂ receptor sites.

Synapse

Department of Molecular Pharmacology, Pharmacological and Safety Research, Gedeon Richter Plc, 1103 Budapest, Gyömrői u. 19-21, Hungary.

Published: June 2011

In vitro binding characteristics of the dopamine D₃/D₂ antagonist [³H]raclopride were compared to the D₃/D₂ agonist [³H](+)-PHNO in membrane preparations from rat striatum, cerebellum Lobules 9 and 10 (CB L9,10), and other cerebellar regions. In striatum, both radioligands labeled a single binding site. [³H](+)-PHNO showed higher affinity, though lower B(max) , compared with [³H]raclopride and was sensitive to inhibition by Gpp(NH)p. [³H](+)-PHNO showed significant specific binding to CB L9,10 membranes with higher affinity compared to striatal membranes. [³H](+)-PHNO binds to a high- and a low-affinity binding site in CB L9,10 membranes; the high-affinity site was not Gpp(NH)p-sensitive. [³H](+)-PHNO did not significantly bind cerebellum left hemisphere membranes. Very low specific binding of [³H]raclopride was found in CB L9,10. The selective dopamine D₃ antagonist SB-277011 did not displace the binding of either ligand to striatal membranes but potently inhibited the binding of [³H](+)-PHNO in CB L9,10 membranes. The highly selective D₂ antagonist SV-156 showed the opposite profile. In vivo experiments were consistent with and supported by in vitro results. In summary, [³H](+)-PHNO and [³H]raclopride mainly label dopamine D₂ receptors in rat striatum, with [³H](+)-PHNO labeling a D₂(High) population. In vitro and in vivo, [³H](+)-PHNO labels CB L9,10 dopamine D₃ receptors that are apparently in a high affinity state whereas [³H]raclopride gave only very low signal in this region. The present approaches appear useful for selectively labeling dopamine D₃ and D₂ receptors in different rat brain regions and offer the possibility to demonstrate D₃ versus D₂ receptor selectivity of compounds using native rat brain tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.20867DOI Listing

Publication Analysis

Top Keywords

dopamine d₃
16
rat striatum
12
l910 membranes
12
[³h]+-phno
10
vitro vivo
8
[³h]+-phno [³h]raclopride
8
binding
8
d₃ d₂
8
d₂ receptor
8
binding site
8

Similar Publications

Nanodiamond (ND) with nitrogen vacancy (NV) color centers has emerged as an important material for quantum sensing and imaging. Fluorescent, carboxylated ND (140 nm) is investigated for the detection of dopamine (DA), caffeine (CA), and ascorbic acid (AA). Over a 200 nM range, DA and CA quenched the ND fluorescence by 7.

View Article and Find Full Text PDF

Existing medical materials (such as silicone rubber, glass slides, etc.) fail to meet the functional requirements of biosensing, cell culture, and drug delivery due to their poor wettability. The preparation of polyelectrolyte coatings with excellent wettability and protein adsorption helps broaden the application of medical materials.

View Article and Find Full Text PDF

A method with high sensitivity, good accuracy and fast response is of ever increasing importance for the simultaneous detection of AA, DA and UA. In this paper, a simple and sensitive electrochemical sensor, which based on the polyvinylpyrrolidone (PVP)-graphene composite film modified glassy carbon electrode (PVP-GR/GCE), was presented for detecting ascorbic acid (AA), dopamine (DA) and uric acid (UA) simultaneously. The PVP-GR/GCE has excellent electrocatalytic activity for the oxidation of AA, DA and UA.

View Article and Find Full Text PDF

A novel and simple strategy for simultaneous determination of dopamine, uric acid and ascorbic acid based on the stacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode.

Talanta

September 2012

College of Chemistry and Chemical Engineering, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Northwest Normal University, Lanzhou 730070, PR China.

A promising electrochemical sensor for simultaneous determination of dopamine (DA), uric acid (UA) and ascorbic acid (AA) was fabricated based on the stacked graphene platelet nanofibers (SGNF)/ionic liquid (IL)/chitosan (CS) modified electrode. The SGNF/IL/CS modified electrode possessed excellent electrocatalytic activity towards the oxidation of DA, UA and AA with obvious reduction of over-potential and increased peak current, and the separations of oxidation peak potentials of DA-UA, DA-AA, and UA-AA were of 151, 213 and 364 mV, respectively. Under the optimum conditions, the linear range for the detection of DA, UA and AA were 0.

View Article and Find Full Text PDF

A voltammetric method based on a combination of incorporated Nafion, single-walled carbon nanotubes and poly(3-methylthiophene) film-modified glassy carbon electrode (NF/SWCNT/PMT/GCE) has been successfully developed for selective determination of dopamine (DA) in the ternary mixture of dopamine, ascorbic acid (AA) and uric acid (UA) in 0.1M phosphate buffer solution (PBS) pH 4. It was shown that to detect DA from binary DA-AA mixture, the use of NF/PMT/GCE was sufficient, but to detect DA from ternary DA-AA-UA mixture NF/SWCNT/PMT/GCE was required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!