Biosilicated CdSe/ZnS quantum dots as photoluminescent transducers for acetylcholinesterase-based biosensors.

Anal Bioanal Chem

Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete Voutes, P.O. Box 2208, 71003 Iraklion, Crete, Greece.

Published: December 2010

CdSe/ZnS core/shell quantum dots (QDs) are functionalized with mercaptoundecanoic acid (MUA) and subsequently covered with poly-L-lysine (PLL) as the template for the formation of the silica outer shell. This nanocomposite is used as a transduction and stabilization system for optical biosensor development. The covalent immobilization of the enzyme acetylcholinesterase from Drosophila melanogaster (AChE) during the formation of the biomimetically synthesized silica is used here as a model, relatively unstable enzyme, as a proof of principle. The enzyme is successfully immobilized onto the QDs and then stabilized by the PLL capping and the subsequent formation of the outer nanoporous silica thin shell, giving rise to the QD/AChE/PLL/silica biosensor. It is shown that the poly-L-lysine templated silica outer shell does not modify the optical properties of the quantum dots, while it protects the enzyme from unfolding and denaturation. The small pores of the silica shell allow for the free diffusion of the analyte to the active center of the enzyme, while it does not allow for the proteases to reach the enzyme. The response of the QD/AChE/PLL/silica nano-biosensor to its substrate, acetylcholine chloride, is evaluated by monitoring the changes in the QDs' photoluminescence which are related to the changes in pH. These pH changes of the surrounding environment of the QDs are induced by the enzymatic reaction, and are associated with the analyte concentration in the solution. The biodetection system proposed is shown to be stable with a storage lifetime of more than 2 months. The data presented provides the grounds for the application of this nanostructured biosensor for the detection of AChE inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-010-4253-zDOI Listing

Publication Analysis

Top Keywords

quantum dots
12
silica outer
8
outer shell
8
enzyme
6
silica
5
biosilicated cdse/zns
4
cdse/zns quantum
4
dots photoluminescent
4
photoluminescent transducers
4
transducers acetylcholinesterase-based
4

Similar Publications

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

Eco-Friendly Fabrication of FeS QD-Chitosan Biopolymer Composites: Green Synthetic Approach.

Biopolymers

March 2025

Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.

In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.

View Article and Find Full Text PDF

Introduction: The successful diagnosis and treatment of early-stage breast cancer enhances the quality of life of patients. As a promising alternative to recently developed magnetic resonance imaging-guided radiotherapy, we proposed fluorescence molecular imaging-guided photodynamic therapy (FMI-guided PDT), which requires no expensive equipment. In the FMI simulations, ICG-C11 which has emission peaks at near-infrared wavelengths was used as the FMI agent.

View Article and Find Full Text PDF

Efficient luminescent solar concentrators based on solvent polarity induced multiple-colored carbon dots.

J Colloid Interface Sci

January 2025

State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 PR China. Electronic address:

Luminescent solar concentrators (LSCs) are large scale sunlight collector and can be used for building-integrated photovoltaics (BIPV). Achieving high-performance LSCs requires fluorophores with broad absorption, high quantum yield and a large Stokes shift. Nevertheless, conventional high-efficiency LSCs typically rely on heavy metal-based quantum dots as fluorophores.

View Article and Find Full Text PDF

Quantum dots for biosensing: Classification and applications.

Biosens Bioelectron

January 2025

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain; Catalan Institution for Research and Advanced Studies (ICREA) Passeig de Lluís Companys, 23, Barcelona, 08010, Spain. Electronic address:

Quantum dots (QDs) are the smallest nanomaterials (2-10 nm), with unique optical and electronic properties. Thanks to these properties, QDs have been standing during the last years as signal tags for different applications, including bioimaging, fluorescent biosensors and electrochemical assays. In this review, we explore the current state-of-the art on these nanomaterials, differentiating them between semiconductor and carbon-based QDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!