Preparation and characterization of a novel skin substitute.

J Biomed Biotechnol

Department of Plastic Surgery, Burn Unit and Skin Bank, Ospedale CTO Turin, Via Zuretti 29, Turin, Italy.

Published: January 2011

Autologous epidermal cell cultures (CEA) represent a possibility to treat extensive burn lesions, since they allow a significative surface expansion which cannot be achieved with other surgical techniques based on autologous grafting. Moreover currently available CEA preparations are difficult to handle and their take rate is unpredictable. This study aimed at producing and evaluating a new cutaneous biosubstitute made up of alloplastic acellular glycerolized dermis (AAGD) and CEA to overcome these difficulties. A procedure that maintained an intact basement membrane was developed, so as to promote adhesion and growth of CEA on AAGD. Keratinocytes were seeded onto AAGD and cultured up to 21 days. Viability tests and immunohistochemical analysis with specific markers were carried out at 7, 14, and 21 days, to evaluate keratinocyte adhesion, growth, and maturation. Our results support the hypothesis that this newly formed skin substitute could allow its permanent engraftment in clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946634PMC
http://dx.doi.org/10.1155/2010/840363DOI Listing

Publication Analysis

Top Keywords

skin substitute
8
adhesion growth
8
preparation characterization
4
characterization novel
4
novel skin
4
substitute autologous
4
autologous epidermal
4
epidermal cell
4
cell cultures
4
cea
4

Similar Publications

Drug discovery and development is a challenging and time-consuming process. Laboratory experiments conducted on Vidarabine showed IC 6.97 µg∕mL, 25.

View Article and Find Full Text PDF

Significance: Machine learning models for the direct extraction of tissue parameters from hyperspectral images have been extensively researched recently, as they represent a faster alternative to the well-known iterative methods such as inverse Monte Carlo and inverse adding-doubling (IAD).

Aim: We aim to develop a Bayesian neural network model for robust prediction of physiological parameters from hyperspectral images.

Approach: We propose a two-component system for extracting physiological parameters from hyperspectral images.

View Article and Find Full Text PDF

Surface Modification of 3D Biomimetic Shark Denticle Structures for Drag Reduction.

Adv Mater

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Shark skin features superhydrophilic and riblet-textured denticles that provide drag reduction, antifouling, and mechanical protection. The artificial riblet structures exhibit drag reduction capabilities in turbulent flow. However, the effects of the surface wettability of shark denticles and the cavity region underneath the denticle crown on drag reduction remain insufficiently explored.

View Article and Find Full Text PDF

Concrete-filled double-skin steel tubular (CFDST) columns have become widely utilized in building construction and bridges, thanks to their exceptional structural capabilities. Therefore, this study investigates the axial compressive behavior of square CFDST columns. The study aims to explore the influence of external and internal plate shapes (flat or corrugated plates) and different widths of internal steel tubes on the axial compressive behavior.

View Article and Find Full Text PDF

Objective: The detection of arterial pulsating signals at the skin periphery with Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or gyroscope) which to date have demonstrated the best pulsating signal reconstruction.

Approach: A generative adversarial network with fully connected layers (FC-GAN) is proposed for the reconstruction of distorted PPG signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!