Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs) modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs). Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF) together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein-before and after differentiation-all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946610 | PMC |
http://dx.doi.org/10.1155/2011/378965 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!