A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Components of the multifactor complex needed for internal initiation by the IRES of hepatitis C virus in Saccharomyces cerevisiae. | LitMetric

Interaction between the 40S ribosomal subunit and the IRES of hepatitis C virus (HCV) is thought to be independent of initiation proteins, while joining of the 60S ribosomal subunit, and initiation of translation is dependent upon components of the translation machinery. An established in vivo functional assay for internal initiation mediated by the HCV IRES was used to identify proteins needed for IRES dependent translation in Saccharomyces cerevisiae strains possessing alterations of the translation machinery. Internal initiation dependent upon the HCV IRES was abrogated in strains lacking eIF5B, and reduced in strains with altered eIF3, either lacking the Hcr1p subunit, a component of eIF3 not previously known to interact with HCV RNA, or possessing an amino acid change in the Rpg1p subunit. The HCV RNA-induced conformational change in the 40S subunit might affect positioning of eIF3 and lead to different interactions between the ribosome, eIF3, and the multifactor complex. HCV IRES dependent initiation was unaffected in strains in which the concentration of the initiating tRNA was reduced. Alteration of the δ subunit of eIF2B, which leads to inefficient recycling, or substitution of aspartic acid for serine 51 of eIF2α had no effect on internal initiation. Production of human Pkr inhibited HCV IRES dependent initiation in yeast. The synthesis of Pkr in yeast is known to result in high levels of eIF2α phosphorylation, increased Gcn4p synthesis, and reduced ribosomal protein production. These alterations may explain the effect of Pkr synthesis on HCV IRES dependent initiation in yeast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073256PMC
http://dx.doi.org/10.4161/rna.7.5.13096DOI Listing

Publication Analysis

Top Keywords

hcv ires
20
internal initiation
16
ires dependent
16
dependent initiation
12
initiation
9
multifactor complex
8
ires
8
ires hepatitis
8
hepatitis virus
8
saccharomyces cerevisiae
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!