A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A waferscale Si wire solar cell using radial and bulk p-n junctions. | LitMetric

A waferscale Si wire solar cell using radial and bulk p-n junctions.

Nanotechnology

Department of Materials and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea.

Published: November 2010

Silicon nanowires (NWs) and microwires (MWs) are cost-effectively integrated on a 4-inch wafer using metal-assisted electroless etching for solar cell applications. MWs are periodically positioned using low-level optical patterning in between a dense array of NWs. A spin-on-doping technique is found to be effective for the formation of heavily doped, thin n-type shells of MWs in which the radial doping profile is easily delineated by low voltage scanning electron microscopy. Controlled tapering of the NWs results in additional optical enhancement via optimization of the tradeoff between increased light trapping (by a graded-refractive-index) and increased reflectance (by decreasing areal density of NWs). Compared to single NW (or MW) arrayed cells, the co-integrated solar cells demonstrate improved photovoltaic characteristics, i.e. a short circuit current of 20.59 mA cm(-2) and a cell conversion efficiency of ∼ 7.19% at AM 1.5G illumination.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/44/445303DOI Listing

Publication Analysis

Top Keywords

solar cell
8
waferscale wire
4
wire solar
4
cell radial
4
radial bulk
4
bulk p-n
4
p-n junctions
4
junctions silicon
4
silicon nanowires
4
nws
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!