Nutrient transport within three vegetative treatment areas receiving silage bunker runoff.

J Environ Manage

Department of Biological and Environmental Engineering, Cornell University, 62 Riley-Robb Hall, Ithaca, NY 14850, USA.

Published: March 2011

Silage bunker runoff can be a very polluting substance and is increasingly being treated by vegetative treatment areas (VTAs), but little information exists regarding nutrient removal performance of systems receiving this wastewater. Nutrient transport through the shallow subsurface of three VTAs (i.e. one VTA at Farm WNY and two VTAs at Farm CNY) in glaciated soils containing a restrictive layer (i.e., fragipan) was assessed using a mass balance approach. At Farm WNY, the mass removal of ammonium was 63%, nitrate was 0%, and soluble reactive phosphorus (SRP) was 39%. At Farm CNY, the mass removal of ammonium was 79% in the West VTA, but nitrate and SRP increased by 200% and 533%, respectively. Mass removal of ammonium was 67% in the East VTA at Farm CNY; nitrate removal was 86% and SRP removal was 88%. The East VTA received a much higher nutrient loading, which was attributed to a malfunctioning low-flow collection apparatus within the settling basin. Results demonstrate that nutrient reduction mechanisms other than vegetative uptake can be significant within VTAs. Even though increases in nitrate mass were observed, concentrations in 1.65m deep wells indicated that groundwater impairment from leaching of nitrate was not likely. These results offer one of the first evaluations of VTAs treating silage bunker runoff, and highlight the importance of capturing concentrated low flows in VTA systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2010.09.020DOI Listing

Publication Analysis

Top Keywords

silage bunker
12
bunker runoff
12
farm cny
12
mass removal
12
removal ammonium
12
nutrient transport
8
vegetative treatment
8
treatment areas
8
vta farm
8
farm wny
8

Similar Publications

This study investigates the efficacy of handheld Near-Infrared Spectroscopy (NIRS) devices for in-field estimation of forage quality using undried samples. The objective is to assess the precision and accuracy of multiple handheld NIRS instruments-NeoSpectra, TrinamiX, and AgroCares-when evaluating key forage quality metrics such as Crude Protein (CP), Neutral Detergent Fiber (aNDF), Acid Detergent Fiber (ADF), Acid Detergent Lignin (ADL), in vitro Total Digestibility (IVTD)and Neutral Detergent Fiber Digestibility (NDFD). Samples were collected from silage bunkers across 111 farms in New York State and scanned using different methods (static, moving, and turntable).

View Article and Find Full Text PDF

Factors contributing to variations in the quality and microbiota of ensiled forages and in bulk tank microbiota in milk from cows fed different forages were investigated. Nutritional quality, fermentation parameters and hygiene quality of forage samples and corresponding bulk tank milk samples collected in 3 periods from 18 commercial farms located in northern Sweden were compared. Principal coordinates analysis revealed that the microbiota in forage and bulk milk, analyzed using 16S rRNA gene-based amplicon sequencing, were significantly different.

View Article and Find Full Text PDF

This study evaluated the effects of inoculating corn silage and/or feeding a direct-fed microbial (PRO) on performance and nutrient digestibility of lactating dairy cows. At harvesting, corn silage was treated either with water (culated or not [CON]) or and (INC; SiloSolve FC) at 1.5 × 10 cfu/g of corn silage.

View Article and Find Full Text PDF

Dairy farms in the United States have changed in many ways over the past 50 yr. Milk production efficiency has increased greatly, with ∼30% fewer cows producing about twice the amount of milk today. Other improvements include increases in crop yields, fuel efficiency of farm equipment, and efficiency in producing most resources used on farms (e.

View Article and Find Full Text PDF

Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!