In this paper, we compare the mechanisms of protein synthesis and natural selection. We identify three core elements of mechanistic explanation: functional individuation, hierarchical nestedness or decomposition, and organization. These are now well understood elements of mechanistic explanation in fields such as protein synthesis, and widely accepted in the mechanisms literature. But Skipper and Millstein have argued (2005) that natural selection is neither decomposable nor organized. This would mean that much of the current mechanisms literature does not apply to the mechanism of natural selection. We take each element of mechanistic explanation in turn. Having appreciated the importance of functional individuation, we show how decomposition and organization should be better understood in these terms. We thereby show that mechanistic explanation by protein synthesis and natural selection are more closely analogous than they appear--both possess all three of these core elements of a mechanism widely recognized in the mechanisms literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.shpsc.2010.07.001 | DOI Listing |
DNA Res
January 2025
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
Pontederia cordata L. is an aquatic ornamental plant native to the Americas, but has been widely distributed in South Asia, Australia, and Europe. The genetic mechanisms behind its rapid adaptation and spread have not yet been well understood.
View Article and Find Full Text PDFJ Am Stat Assoc
January 2023
Department of Statistics, University of Pennsylvania, Philadelphia, PA.
Accurate estimation of the change in crime over time is a critical first step toward better understanding of public safety in large urban environments. Bayesian hierarchical modeling is a natural way to study spatial variation in urban crime dynamics at the neighborhood level, since it facilitates principled "sharing of information" between spatially adjacent neighborhoods. Typically, however, cities contain many physical and social boundaries that may manifest as spatial discontinuities in crime patterns.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.
Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced only in the mouse.
View Article and Find Full Text PDFPlast Surg (Oakv)
February 2025
Schulich School of Medicine, Western University, London, Canada.
Breast implants were first introduced in the 1960s and have long been used for augmentation and reconstructive breast surgery. More recently, fat grafting for breast augmentation has gained popularity due to the 'natural' outcome and lack of implant-related complications. The aim of this study was to conduct a systematic review and meta-analysis comparing patient-related outcome measures between fat grafting and implant-based primary augmentation using the validated BREAST-Q questionnaire.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Centre for Functional Biodiversity, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa.
Ecological niche shifts are a key driver of phenotypic divergence and contribute to isolating barriers among lineages. For many groups of organisms, the history of these shifts and associated trait-environment correlations are well-documented at the macroevolutionary level. However, the processes that generate these patterns are initiated below the species level, often by the formation of ecotypes in contrasting environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!