Short-term caloric restriction (CR) protects the young myocardium against ischemia/reperfusion (I/R) injury through a mechanism involving AMP-activated protein kinase (AMPK). Here we ask whether a life-long CR intervention can extend this protection to the aged myocardium, and whether AMP-activated protein kinase (AMPK) plays a role in that protection. Hearts from ad libitum fed (AL) and life-long calorically restricted (LCR) mice were examined at 30 months of age by 25/90min global I/R, with and without AMPK inhibition (AraA). LCR hearts were protected from infarction (AL, 28±4% vs. LCR, 10±1%, p<0.01) and post-ischemic functional deficit (LVDP recovery: AL, 65±8% vs. LCR, 93±7%, p<0.01). Pre-ischemic AraA impaired both of these protective effects (Infarct size: LCR+AraA, 22±4%; LVDP recovery: LCR+AraA, 82±9%, both p vs. AL >0.1). AMPKα phosphorylation was dramatically increased in LCR hearts prior to I/R (AL, 1.18±0.01 vs. LCR, 1.68±0.04, ratio, p<0.0001), and accompanied by a more modest increase in total AMPKα (AL, 2.18±0.03 vs. LCR, 2.39±0.08 ratio, p<0.05). These results indicate that life-long caloric restriction profoundly protects the aged heart against I/R injury, and suggest that AMPK may play a role in that protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010207 | PMC |
http://dx.doi.org/10.1016/j.mad.2010.09.007 | DOI Listing |
Front Nutr
January 2025
Aging and Metabolism Research Program, Oklahoma City, OK, United States.
Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.
View Article and Find Full Text PDFInt J Prev Med
December 2024
Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
Background: Aging is caused by the progressive accumulation of various changes in the body, which is associated with an increase in free radicals and oxidative stress (OS). The aim of this study was to investigate the potential of caloric restriction (CR) and quercetin (QUER) in alleviating OS in aging and the involvement of the NAD (P) H quinone oxidoreductase 1 (NQO1)/SIRT1 signaling pathway in these effects.
Methods: Two age groups of male Wistar rats (eight and 20 weeks of age) were included in the study and subdivided into normal diet (ND), ND with QUER (15 mg Kg, IP), ND with CR, and ND with QUER and CR groups.
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India. Electronic address:
Mammalian sirtuins are class III histone deacetylases involved in the regulation of multiple biological processes including senescence, DNA repair, apoptosis, proliferation, caloric restriction, and metabolism. Among the mammalian sirtuins, SIRT3, SIRT4, and SIRT5 are localized in the mitochondria and collectively termed the mitochondrial sirtuins. Mitochondrial sirtuins are NAD+-dependent deacetylases that play a central role in cellular metabolism and function as epigenetic regulators by performing post-translational modification of cellular proteins.
View Article and Find Full Text PDFNutrients
January 2025
Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy.
Obesity is closely linked to chronic low-grade inflammation and the development of cardio-metabolic comorbidities. Monocyte subsets, which are crucial in immune responses, have been reported to be altered in individuals with obesity, potentially exacerbating inflammation. Although very-low-calorie ketogenic diets (VLCKDs) are recognized for their efficacy in promoting weight loss and improving metabolic health, their impact on circulating monocyte subsets remains poorly understood.
View Article and Find Full Text PDFNutrients
January 2025
Department of Sports Medicine and Sports Nutrition, Ruhr University Bochum, 44801 Bochum, Germany.
Background/objectives: Low energy availability (LEA) can cause impaired reproductive function, bone health issues, and suppressed immune function, and may result in decreased performance and overall health status. The purpose of this study was to investigate adaptions of body composition, blood status, resting metabolic rate, and endurance performance to gain more comprehensive insights into the symptoms of LEA and the adaptive effects in the athlete population (active women (n = 11) and men (n = 11)).
Methods: Three treatments were defined as 45 (EA45, control), 30 (EA30), and 10 (EA10) kcal/kg FFM/day and randomly assigned.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!