According to the focal cortical theory of absence epilepsy, spike-and-wave discharges (SWDs) have a cortical focal origin in the perioral region of the somatosensory cortex in rats. In the present study the role of peripheral afferents of the perioral (snout) region in the occurrence of spontaneous SWDs was investigated in the WAG/Rij (Wistar Albino Glaxo from Rijswijk) rat model of absence epilepsy in order to examine whether an input from peripheral sources is imperative for the occurrence of SWDs. Twelve male WAG/Rij rats were chronically equipped with cortical EEG electrodes. Peripheral afferents of the perioral region of the snout nervus trigeminus were pharmacologically blocked with a local injection of 2% Novocain, a blockade of nervus facialis and saline injections were used as controls. ECoGs were recorded before and after bilateral injection of the drug. Blockade of the n. trigeminus decreased the incidence and duration of SWD, while similar injections with Novocain near the n. facialis had no effect. Injections with saline were also not effective. Our data demonstrate that intact peripheral afferent input may be primarily involved in the initiation of SWDs. It suggests that the cortico-thalamo-cortical circuits need the peripheral stimulations from the snout and vibrissae for an initiation of the spontaneous SWDs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2010.10.007DOI Listing

Publication Analysis

Top Keywords

absence epilepsy
12
perioral region
8
peripheral afferents
8
afferents perioral
8
spontaneous swds
8
swds
5
peripheral
5
role perioral
4
perioral afferentation
4
afferentation occurrenceof
4

Similar Publications

From pain to meningitis: bacteria hijack nociceptors to promote meningitis.

Front Immunol

January 2025

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.

Bacterial meningitis is a severe and life-threatening infection of the central nervous system (CNS), primarily caused by and . This condition carries a high risk of mortality and severe neurological sequelae, such as cognitive impairment and epilepsy. Pain, a central feature of meningitis, results from the activation of nociceptor sensory neurons by inflammatory mediators or bacterial toxins.

View Article and Find Full Text PDF

Mitochondria and lysosomes are critical for neuronal homeostasis, as highlighted by their dysfunction in various neurological diseases. Recent studies have identified dynamic membrane contact sites between mitochondria and lysosomes, independent of mitophagy and the lysosomal degradation of mitochondrial-derived vesicles (MDVs), allowing bidirectional crosstalk between these cell compartments, the dynamic regulation of organelle networks, and substance exchanges. Emerging evidence suggests that abnormalities in mitochondria-lysosome contact sites (MLCSs) contribute to neurological diseases, including Parkinson's disease, Charcot-Marie-Tooth (CMT) disease, lysosomal storage diseases, and epilepsy.

View Article and Find Full Text PDF

Protein lactylation is a new form of post-translational modification that has recently been proposed. Lactoyl groups, derived mainly from the glycolytic product lactate, have been linked to protein lactylation in brain tissue, which has been shown to correlate with increased neuronal excitability. Ischemic stroke may promote neuronal glycolysis, leading to lactate accumulation in brain tissue.

View Article and Find Full Text PDF

Infections impacting the central nervous system (CNS) constitute a substantial predisposing factor for the emergence of epileptic seizures. Given that epilepsy conventionally correlates with hippocampal sclerosis and neuronal degeneration, a potentially innovative avenue for therapeutic intervention involves fostering adult neurogenesis, a process primarily occurring within the subgranular zone of the dentate gyrus (DG) through the differentiation of neural stem cells (NSC). While experimental seizures induced by chemoconvulsants or electrical stimulation transiently enhance neurogenesis, the effects of encephalitis and the resultant virus-induced seizures remain inadequately understood.

View Article and Find Full Text PDF

Drug delivery for epilepsy treatment faces enormous challenges, where the sole focus on enhancing the ability of drugs to penetrate the blood-brain barrier (BBB) through ligand modification is insufficient because of the absence of seizure-specific drug accumulation. In this study, an amphipathic drug carrier with a glucose transporter (GLUT)-targeting capability was synthesised by conjugating 2-deoxy-2-amino-D-glucose (2-DG) to the model carrier DSPE-PEG. A 2-DG-modified nano drug delivery system (NDDS) possessing robust stability and favourable biocompatibility was then fabricated using the nanoprecipitation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!