Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photosynthetic dinoflagellates possess a great diversity of plastids that have been acquired through successful serial endosymbiosis. The peridinin-containing plastid in dinoflagellates is canonical, but many other types are known within this group. Within the Dinophysiales, several species of Dinophysis contain plastids, derived from cryptophytes or haptophytes. In this work, the presence of numerous intracellular cyanobacteria-like microorganisms compartmentalized by a separate membrane is reported for the first time within the benthic dinophysoid dinoflagellate Sinophysis canaliculata Quod et al., a species from a genus morphologically close to Dinophysis. Although the contribution of these cyanobacterial endosymbionts to S. canaliculata is still unknown, this finding suggests a possible undergoing primary endosymbiosis in a dinoflagellate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.protis.2010.07.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!