A series of complexes of the type [M(L)(dppe)X2]; where M=Zn(II) or Cd(II); L=4-(2'-thiazolylazo)chlorobenzene (L1), 4-(2'-thiazolylazo)bromobenzene (L2) and 4-(2'-thiazolylazo) iodobenzene (L3); dppe=1,2-bis(diphenylphosphino)ethane; X=N3- or NCS- have been prepared and characterized on the basis of their microanalysis, molar conductance, thermal, IR, UV-vis and 1H NMR spectral studies. IR spectra show that the ligand L is coordinated to the metal atom in bidentate manner via azo nitrogen and thiazole nitrogen. An octahedral structure is proposed for all the complexes. The thermal behavior of the complexes revealed that the thiocyanato complexes are thermally more stable than the azido complexes. All the complexes exhibit blue-green emission with high quantum yield as the result of the fluorescence from the intraligand emission excited state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2010.09.004DOI Listing

Publication Analysis

Top Keywords

complexes
7
synthesis spectral
4
spectral characterization
4
characterization thermal
4
thermal photoluminescence
4
photoluminescence properties
4
properties znii
4
znii cdii-azido/thiocyanato
4
cdii-azido/thiocyanato complexes
4
complexes thiazolylazo
4

Similar Publications

Background: This review explores virtual reality (VR) and exercise simulator-based interventions for individuals with attention-deficit/hyperactivity disorder (ADHD). Past research indicates that both VR and simulator-based interventions enhance cognitive functions, such as executive function and memory, though their impacts on attention vary.

Objective: This study aimed to contribute to the ongoing scientific discourse on integrating technology-driven interventions into the management and evaluation of ADHD.

View Article and Find Full Text PDF

Design strategies and biomedical applications of organic NIR-IIb fluorophores.

Chem Commun (Camb)

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.

View Article and Find Full Text PDF

We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.

View Article and Find Full Text PDF

We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the generalized fluctuation-dissipation theorem. The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations.

View Article and Find Full Text PDF

In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!