Brain vasopressin plays a role in behavioral and cognitive functions and in pathological conditions. Relevant examples are pair bonding, social recognition, fear responses, stress disorders, anxiety and depression. At the neuronal level, vasopressin exerts its effects by binding to V1a receptors. In the brainstem, vasopressin can excite facial motoneurons by generating a sustained inward current which is sodium-dependent, tetrodotoxin-insensitive and voltage-gated. This effect is independent of intracellular calcium mobilization and is unaffected by phospholipase Cβ (PLCβ) or protein kinase C (PKC) inhibitors. There are two major unsolved problems. (i) What is the intracellular signaling pathway activated by vasopressin? (ii) What is the exact nature of the vasopressin-sensitive cation channels? We performed recordings in brainstem slices. Facial motoneurons were voltage-clamped in the whole-cell configuration. We show that a major fraction, if not the totality, of the peptide effect was mediated by cAMP signaling and that the vasopressin-sensitive cation channels were directly gated by cAMP. These channels appear to exclude lithium, are suppressed by 2-aminoethoxydiphenylborane (2-APB) and flufenamic acid (FFA) but not by ruthenium red or amiloride. They are distinct from transient receptor channels and from cyclic nucleotide-regulated channels involved in visual and olfactory transduction. They present striking similarities with cation channels present in a variety of molluscan neurons. To our knowledge, the presence in mammalian neurons of channels having these properties has not been previously reported. Our data should contribute to a better knowledge of the neural mechanism of the central actions of vasopressin, and may be potentially significant in view of clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2010.10.006 | DOI Listing |
Cell Commun Signal
January 2025
Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFSci Rep
January 2025
College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong, 030619, China.
The anti-inflammatory effect of phellodendrine (PHE), derived from Phellodendri Chinensis Cortex, has been verified in previous studies. Major depressive disorder (MDD) is associated with immune dysregulation and inflammatory processes. This study aimed to explore the therapeutic effects of PHE on MDD through network pharmacology and experimental validation.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Orthopaedics, Beijing Ditan Hospital Affiliated to Capital Medical University, Chaoyang District, Beijing, China.
Acquired immunodeficiency syndrome is a systemic infectious disease caused by human immunodeficiency virus infection, which could attack the bones and heart. However, the relationship between Nuclear Complex Associated 3 Homolog (NOC3L) and DEAD box helicase 17 (DDX17) and acquired immunodeficiency complicated with viral myocarditis and osteoporosis is unclear. The acquired immune deficiency dataset GSE140713, GSE147162 and the osteoporosis dataset (GSE230665), and viral myocarditis dataset (GSE150392) configuration files were generated from gene expression omnibus.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India.
Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed at hypothalamic neurons that has an important role in appetite suppression and food intake. Mutations in MC4R are the most common cause of monogenic obesity and can affect multiple signaling pathways including Gs-cAMP, Gq, ERK1/2, β-arrestin recruitment, internalization and cell surface expression. The melanocortin-2 receptor accessory protein 2 (MRAP2), is a single-pass transmembrane protein that interacts with and regulates signaling by MC4R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!