The cytochrome P450 (CYP) reaction mechanism often yields a broad array of coupled and uncoupled products from a single substrate. While it is well known that reaction conditions can drastically affect the rate of P450 catalysis, their effects on regioselectivity and coupling are not well characterized. To investigate such effects, the CYP1A2 oxidation of 7-ethoxymethoxy-3-cyanocoumarin (EOMCC) was examined as a function of buffer type, buffer concentration, pH, and temperature. A high-throughput, optical method was developed to simultaneously measure the rate of substrate depletion, NADPH depletion, and generation of the O-dealkylated product. Increasing the phosphate buffer concentration and temperature increased both the NADPH and EOMCC depletion rates by 6-fold, whereas coupling was constant at 7.9% and the regioselectivity of O-dealkylation to other coupled pathways was constant at 21.7%. Varying the buffer type and pH increased NADPH depletion by 2.5-fold and EOMCC depletion by 3.5-fold; however, neither coupling nor regioselectivity was constant, with variations of 14.4% and 21.6%, respectively. Because the enzyme-substrate binding interaction is a primary determinant of both coupling and regioselectivity, it is reasonable to conclude that ionic strength, as varied by the buffer concentration, and temperature alter the rate without affecting binding while buffer type and pH alter both.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179853 | PMC |
http://dx.doi.org/10.1016/j.abb.2010.10.002 | DOI Listing |
Trans R Soc Trop Med Hyg
January 2025
Department of Medical Parasitology, Medical school, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran.
Background: Leishmaniasis represents a significant parasitic disease with global health implications, and the development of an affordable and effective vaccine could provide a valuable solution. This study aimed to evaluate the immunogenicity of a DNA vaccine targeting Leishmania major specifically based on the Leishmania-activated C kinase (LACK) antigen, utilizing calcium phosphate nanoparticles (CaPNs) and chitosan nanoparticles (ChitNs) as adjuvants.
Methods: Seventy female BALB/c mice, aged 4-6 wk and weighing 20-22 g, were selected and divided into five groups, each consisting of 14 mice.
J Clin Microbiol
December 2024
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.
Front Microbiol
December 2024
Oniris VetAgroBio, INRAE, SECALIM, Nantes, France.
Our study aims to assess the thermal inactivation of non-proteolytic type B spores in a plant-based fish and to evaluate the potential of alternative heat treatments at temperatures below the safe harbor guidelines established for vacuum-packed chilled products of extended durability. First, the heat resistance of the spore suspension was determined using capillary tubes in potassium phosphate buffer at 80°C. The D value was estimated to be 0.
View Article and Find Full Text PDFEcol Lett
December 2024
Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, Washington, USA.
Behavioural plasticity is an important mechanism allowing animals to cope with changing environments. Theory has hypothesized the existence of 'plasticity syndromes'-positive correlations in plasticity across multiple behaviours within an individual-affording a generalized ability to respond to environmental change. However, the occurrence of correlated plasticities and their potential fitness consequences in natural populations remain untested.
View Article and Find Full Text PDFBio Protoc
December 2024
Infectious Disease Research Institute of Montpellier (IRIM), UMR 9004 CNRS, University of Montpellier, Montpellier, France.
The human T-lymphotropic virus type-1 (HTLV-1) is an oncogenic retrovirus that predominantly spreads through cell-to-cell contact due to the limited infectivity of cell-free viruses. Among various modes of intercellular transmission, HTLV-1 biofilms emerge as adhesive structures, polarized at the cell surface, which encapsulate virions within a protective matrix. This biofilm is supposed to facilitate simultaneous virion delivery during infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!