B cells not only play a pivotal role in humoral immunity, but also are involved in a broad spectrum of immune responses, including antigen presentation and T-cell function regulation. The identification of cell-surface CD molecules derived from a series of Human Leukocyte Differentiation Antigens (HLDA) Workshops has been instrumental to the discovery and functional characterization of human B-cell populations. Moreover, many events regulating B-cell development, activation, and effector functions are orchestrated by these cell-surface molecules. During the Ninth HLDA Workshop (HLDA9) eighteen new CDs were allocated to cell-surface molecules expressed on B cells: CD210a (IL10RA), CD215 (IL15RA), CD270 (TNFRSF14), CD307a (FCRL1), CD307b (FCRL2), CD307c (FCRL3), CD307d (FCRL4), CD351 (FCAMR), CD352 (SLAMF6), CD353 (SLAMF8), CD354 (TREM1), CD355 (CRTAM), CD357 (TNFRSF18), CD358 (TNFRSF21), CD360 (IL21RA), CD361 (EVI2B), CD362 (SDC2), and CD363 (S1PR1). Here we present their expression patterns on leukocytes, including T lymphocytes, NK cells, granulocytes, monocytes, plasmacytoid and monocyte-derived dendritic cells, and several B-cell subsets. These new CD molecules are expressed on B cells at various stages of differentiation; from bone marrow precursor pro-B cells to plasma cells. Three of them, CD307a, CD307b and CD307d, exhibit a B-cell restricted expression pattern, whereas the rest are also present on other leukocytes. In this paper we also review the structural characteristics, expression, and function of these new CD molecules. The availability of monoclonal antibodies directed against novel B cell-surface molecules will have broad implications not only for B-cell biology, but also for the development of new diagnostic and therapeutic tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imlet.2010.09.019 | DOI Listing |
Biomater Adv
December 2024
Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:
This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.
View Article and Find Full Text PDFClin Exp Med
January 2025
Liver & Peritonectomy Unit, Department of Surgery, St George Hospital, Pitney Building, Short Street, Kogarah, NSW, 2217, Australia.
Purpose: This study seeks to resolve a fundamental question in oncology: Why do appendiceal and colorectal adenocarcinomas exhibit distinct liver metastasis rates? Building on our prior hypothesis published in the British Journal of Surgery, our institution has investigated potential DNA mutations within the carcinoembryonic antigen-related cell adhesion molecule (CEACAM5) gene's Pro-Glu-Leu-Pro-Lys (PELPK) motif to evaluate its role as a biomarker for liver metastasis risk.
Methods: Partnering with the Australian Genome Research Facility, the PELPK motif of CEACAM5 was analysed in colorectal and appendiceal adenocarcinomas to detect DNA mutations associated with liver metastasis. Additionally, our institution performed the COPPER trial to assess carcinoembryonic antigen (CEA) levels in portal versus peripheral blood in patients with appendiceal adenocarcinoma and a systematic review and meta-analysis of 136 studies on CEA's prognostic significance among patients with colorectal and appendiceal adenocarcinoma.
Int Immunopharmacol
January 2025
Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China. Electronic address:
Background: FcγRI, a pivotal cell surface receptor, is implicated in diverse immune responses and is ubiquitously expressed on numerous immune cells. However, its role in intracellular bacterial infections remains understudied.
Methods: Wild-type (WT) and FcγRI knockout (FcγRI-KO) mice were inoculated intranasally with a specific dose of C.
Alzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Baylor College of Medicine, Houston, TX, USA.
Background: During aging, we observe several changes in the brain that render it more vulnerable to a variety of age-related neurodegenerative diseases, including Alzheimer's Disease. Glia-neuron interactions mediate brain development and physiology via cell-surface proteins at the cell-surface interface, and dysregulation of these interactions is considered one of the hallmarks of brain aging. Due to the critical role glial cells play in neuroplasticity, immune function, and homeostasis, dysregulation of glial cell-surface proteins is hypothesized to contribute to neurodegeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!