The vertical distribution of phytoplankton in stratified water columns.

J Theor Biol

W.K. Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI 49060, USA.

Published: January 2011

What determines the vertical distribution of phytoplankton in different aquatic environments remains an open question. To address this question, we develop a model to explore how phytoplankton respond through growth and movement to opposing resource gradients and different mixing conditions. We assume stratification creates a well-mixed surface layer on top of a poorly mixed deep layer and nutrients are supplied from multiple depth-dependent sources. Intraspecific competition leads to a unique strategic equilibrium for phytoplankton, which allows us to classify the distinct vertical distributions that can exist. Biomass can occur as a benthic layer (BL), a deep chlorophyll maximum (DCM), or in the mixed layer (ML), or as a combination of BL+ML or DCM+ML. The ML biomass can be limited by nutrients, light, or both. We predict how the vertical distribution, relative resource limitation, and biomass of phytoplankton will change across environmental gradients. We parameterized our model to represent potentially light and phosphorus limited freshwater lakes, but the model is applicable to a broad range of vertically stratified systems. Increasing nutrient input from the sediments or to the mixed layer increases light limitation, shifts phytoplankton towards the surface, and increases total biomass. Increasing background light attenuation increases light limitation, shifts the phytoplankton towards the surface, and generally decreases total biomass. Increasing mixed layer depth increases, decreases, or has no effect on light limitation and total biomass. Our model is able to replicate the diverse vertical distributions observed in nature and explain what underlying mechanisms drive these distributions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2010.09.041DOI Listing

Publication Analysis

Top Keywords

vertical distribution
12
mixed layer
12
light limitation
12
total biomass
12
distribution phytoplankton
8
vertical distributions
8
increases light
8
limitation shifts
8
shifts phytoplankton
8
phytoplankton surface
8

Similar Publications

Globally, multiple trials have successfully demonstrated the effectiveness of novel tools, such as the sterile and incompatible insect techniques, in suppressing Aedes aegypti populations. However, there is concern that Aedes albopictus, another arbovirus-competent vector, may occupy the niches vacated by Ae. aegypti in areas where these species occur in sympatry.

View Article and Find Full Text PDF

Spatial changes in benthic community structure have been observed across natural gradients in deep-sea ecosystems, but these patterns remain under-sampled on seamounts. Here, we identify the spatial composition and distribution of coral and sponge taxa on four sides of a single central Pacific equatorial "model" seamount within the US EEZ surrounding the Howland and Baker unit of the Pacific Islands Heritage Marine National Monument. This seamount rises from 5,000 + m to mesophotic depths of 196 m, and is influenced by the Equatorial Undercurrent.

View Article and Find Full Text PDF

Identification of subsurface cavities in urban environment.

Sci Rep

January 2025

Center of Astronomy, Astrophysics and Geophysics Research, Route de l'Observatoire, Bouzaréah, Alger, 16340, Algeria.

Gravimetry is the most suitable geophysical method for identifying subsurface cavities in urban or industrial environments, as it is unaffected by nearby electromagnetic disturbances. In this study, we used gravimetric geophysical method to understand the land subsidence, collapses, and fissures observed around the sealed Albian drilling site located in the M'Rara region of Northeast of Algeria. Particularly, we would like study the geological observed phenomena and its potential association with the presence of a cavity within the salt layer.

View Article and Find Full Text PDF

Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.

View Article and Find Full Text PDF

Dissemination of genes associated with antibiotic resistance and bacterial virulence during ecosystem succession in two Tibetan glacier forefields.

Sci Total Environ

January 2025

Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China; Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province, China. Electronic address:

The release of pathogens and DNA from the cryosphere (glacier, permafrost, and, sea ice) has become a new threat to society and environment. Due to enhanced glacier retreat, the size of glacier forefields has greatly expanded. Herein, we used a combination of metagenomic and metatranscriptomic methods and adopted a sequence-based approach to investigate the distribution and changing patterns of virulence factor genes (VFGs) and antibiotic resistance genes (ARGs) in two glacier forefields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!