The ultrastructure of sarcomeres of glycerinated rabbit psoas muscle was studied using freeze-fracture-etching, freeze-drying and optical diffraction techniques in comparison with the investigation of this muscle by plastic sections and negative staining methods. In frozen and dried myofibrils isolated from the above muscle the stripes of minor proteins location in A- and I-disks were clearly seen. The pivot structure in thick filaments was revealed in longitudinal fractures of the muscle. The ordered arrangement of myosin heads (crossbridges) associated with actin filaments was preserved in frozen longitudinal fractures as evidenced by optical diffraction. Freeze etching technique allowed to revealed some details of Z-line structure: alpha-actinin bridges connecting the ends of actin filaments of neighbouring sarcomeres and to preserve the lateral struts between actin filaments in I-disks.

Download full-text PDF

Source

Publication Analysis

Top Keywords

actin filaments
12
optical diffraction
8
longitudinal fractures
8
[the cryomethods
4
cryomethods sarcomere
4
sarcomere ultrastructure
4
ultrastructure rabbit
4
rabbit skeletal
4
skeletal muscles]
4
muscles] ultrastructure
4

Similar Publications

Dual-filament regulation of relaxation in mammalian fast skeletal muscle.

Proc Natl Acad Sci U S A

March 2025

Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, United Kingdom.

Muscle contraction is driven by myosin motors from the thick filaments pulling on the actin-containing thin filaments of the sarcomere, and it is regulated by structural changes in both filaments. Thin filaments are activated by an increase in intracellular calcium concentration [Ca] and by myosin binding to actin. Thick filaments are activated by direct sensing of the filament load.

View Article and Find Full Text PDF

The cytoskeleton is crucial for cell organization and movement. In Eukaryotes, it largely consists of the protein actin, that forms a double-stranded linear filamentous structure in the presence of ATP and disassemble upon ATP hydrolysis. Bacteria also possess actin homologs, that drive fundamental cellular processes, including cell division, shape maintenance, and DNA segregation.

View Article and Find Full Text PDF

The actin cytoskeleton plays an important role in morphological changes of ameloblasts during the formation of enamel, which is indispensable for teeth to withstand wear, fracture and caries progression. This study reveals that the actin nucleator Cobl is expressed in ameloblasts of mandibular molars during amelogenesis. Cobl expression was particularly pronounced during the secretory phase of the enamel-forming cells.

View Article and Find Full Text PDF

Endometriosis and Cytoskeletal Remodeling: The Functional Role of Actin-Binding Proteins.

Cells

February 2025

Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland.

Endometriosis is a chronic, estrogen-dependent gynecological disorder characterized by the presence of endometrial-like tissue outside the uterine cavity. Despite its prevalence and significant impact on women's health, the underlying mechanisms driving the invasive and migratory behavior of endometriotic cells remain incompletely understood. Actin-binding proteins (ABPs) play a critical role in cytoskeletal dynamics, regulating processes such as cell migration, adhesion, and invasion, all of which are essential for the progression of endometriosis.

View Article and Find Full Text PDF

The Role of RAC2 and PTTG1 in Cancer Biology.

Cells

February 2025

Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland.

Several molecular pathways are likely involved in the regulation of cancer stem cells (CSCs) via Ras-associated C3 botulinum toxin substrate 2, RAC2, and pituitary tumor-transforming gene 1 product, PTTG1, given their roles in cellular signaling, survival, proliferation, and metastasis. RAC2 is a member of the Rho GTPase family and plays a crucial role in actin cytoskeleton dynamics, reactive oxygen species production, and cell migration, contributing to epithelial-mesenchymal transition (EMT), immune evasion, and therapy resistance. PTTG1, also known as human securin, regulates key processes such as cell cycle progression, apoptosis suppression, and EMT, promoting metastasis and enhancing cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!