Nonequilibrium molecular dynamics (MD) simulations and instantaneous normal mode (INMs) analyses are used to study the vibrational relaxation of the C-H stretching modes (ν(s)(CH₃)) of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. The INMs are identified unequivocally in terms of the equilibrium normal modes (ENMs), or groups of them, using a restricted version of the recently proposed Min-Cost assignment method. After excitation of the parent ν(s)(CH₃) modes with one vibrational quantum, the vibrational energy is shown to dissipate through both intramolecular vibrational redistribution (IVR) and intermolecular vibrational energy transfer (VET). The decay of the vibrational energy of the ν(s)(CH₃) modes is well fitted to a triple exponential function, with each characterizing a well-defined stage of the entire relaxation process. The first, and major, relaxation stage corresponds to a coherent ultrashort (τ(rel) = 0.07 ps) energy transfer from the parent ν(s)(CH₃) modes to the methyl bending modes δ(CH₃), so that the initially excited state rapidly evolves into a mixed stretch-bend state. In the second stage, characterized by a time of 0.92 ps, the vibrational energy flows through IVR to a number of mid-range-energy vibrations of the solute. In the third stage, the vibrational energy accumulated in the excited modes dissipates into the bath through an indirect VET process mediated by lower-energy modes, on a time scale of 10.6 ps. All the specific relaxation channels participating in the whole relaxation process are properly identified. The results from the simulations are finally compared with the recent experimental measurements of the ν(s)(CH₃) vibrational energy relaxation in NMAD/D₂O(l) reported by Dlott et al. (J. Phys. Chem. A 2009, 113, 75.) using ultrafast infrared-Raman spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp106998hDOI Listing

Publication Analysis

Top Keywords

vibrational energy
24
νsch₃ modes
12
vibrational
10
modes
9
molecular dynamics
8
dynamics simulations
8
simulations instantaneous
8
vibrational relaxation
8
relaxation c-h
8
c-h stretching
8

Similar Publications

The analysis of Raman and Infrared (IR) phonons in monolayered tetragonal (Sr, Ba)HfO compounds, which exhibit D symmetry and belong to the I4/mmm phase of space group 139 with Z = 2, has been conducted using normal coordinates. The SrHfO and BaHfO compounds are the first members of the Ruddlesden-Popper (RP) series denoted as (Sr, Ba)HfO with n = 1. Nine Short-Range Force Constants (SRFC) have been included in theoretical calculations to analyze the optical phonons of SrHfO and BaHfO compounds within the I4/mmm phase.

View Article and Find Full Text PDF

Rotational spectroscopy is an excellent tool for structure determination, which can provide additional insights into local electronic structure by investigating the hyperfine pattern due to nuclear quadrupole coupling. Jet-cooled molecules are good experimental benchmark targets for electronic structure calculations, as they are free of environmental effects. We report the rotational spectra of 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, and 4-chlorobenzaldehyde, including a complete experimental description of the nuclear quadrupole coupling constants, which were previously not experimentally determined.

View Article and Find Full Text PDF

Controlling reaction outcomes through external influences is a central goal in chemistry. Vibrational coupling between molecular vibrations and cavity modes is rapidly emerging as a distinct strategy compared with conventional thermochemical and photochemical methods; however, insight into the fundamental mechanisms remains limited. Here we investigate how vibrational weak and strong coupling in plasmonic nanocavities modifies the thermal dehydration of copper sulfate pentahydrate.

View Article and Find Full Text PDF

pyVPT2: Interoperable software for anharmonic vibrational frequency calculations.

J Chem Phys

January 2025

Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.

We present pyVPT2, a program to perform second-order vibrational perturbation theory (VPT2) computations to obtain anharmonic vibrational frequencies. This program is written in Python and can utilize any of the several quantum chemistry programs that have been interfaced to the QCEngine project of the Molecular Sciences Software Institute (MolSSI). The requisite single point energy, gradient, or Hessian computations can be automatically performed in a distributed-parallel fashion by optionally using the MolSSI's QCFractal software.

View Article and Find Full Text PDF

The cyano-cyclopentadiene molecule (CN-CH) has attracted significant interest since its detection in the interstellar medium, but the radical (CN-CH) and anionic (CN-CH) forms of cyano-cyclopentadiene have not been studied. The cyano-cyclopentadienyl radical (CN-Cp) has a strong dipole moment, rendering it an ideal system for vibrational and rotational spectroscopy. We report an investigation of the cryogenically cooled cyano-cyclopentadienide anion (CN-Cp) using high-resolution photoelectron imaging, photodetachment spectroscopy, and resonant photoelectron imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!