Effect of cryopreservation on cell proliferation and immunogenicity of transplanted human heart cells.

Ann Thorac Cardiovasc Surg

Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Toho University, Japan.

Published: April 2010

Background: Cell preservation is essential for successful cell transplantation and/or tissue engineering. We examined the effects of cryopreservation on the transplantation of human heart cells.

Methods: Cells isolated from human atrial tissues were cultured for 15 days (control group), cryopreserved for 1 week, and rapidly thawed and cultured for 15 days. Proliferation was compared among control and cryopreserved cells or tissues by constructing growth curves. Growth factors, cytokines, biochemical features, and cell cycle phase were measured immediately before and after cryopreservation, and immunogenicity was evaluated from growth curves generated from heart cells after 7 days in mixed-lymphocyte culture. Control or cryopreserved cells were transplanted into rat connective tissues and evaluated histologically 2 weeks later.

Results: Cryopreserved cells proliferated more effectively than control cells. Levels of basic fibroblast growth factor and transforming growth factor-β1 were significantly higher, and those of interleukin (IL)-6 and IL-8 were significantly lower after cryopreservation. Fewer peripheral blood lymphocytes were produced in cryopreserved cells than in noncryopreserved cells, and the cell cycle phase of cryopreserved heart cells shifted primarily to G2 + M from G1 + G0. Noncryopreserved and cryopreserved cells both survived in connective tissue.

Conclusion: Human atrial cells can be cultured, cryopreserved, and transplanted. Cryopreservation might increase the proliferation of human cells and tissues and also reduce the immunogenicity of heart cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cryopreserved cells
20
heart cells
16
cells
14
human heart
8
human atrial
8
cultured days
8
cryopreserved
8
control cryopreserved
8
cells tissues
8
growth curves
8

Similar Publications

Heterotypic spheroids as a strategy for 3D culture of cryopreserved primary human hepatocytes in stirred-tank systems.

SLAS Discov

January 2025

iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157, Oeiras, Portugal. Electronic address:

Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability.

View Article and Find Full Text PDF

Insights on the role of cryoprotectants in enhancing the properties of bioinks required for cryobioprinting of biological constructs.

J Mater Sci Mater Med

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.

Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.

View Article and Find Full Text PDF

The human intestine plays a pivotal role in nutrient absorption and immune system regulation. Along the longitudinal axis, cell-type composition changes to meet the varying functional requirements. Therefore, our protocol focuses on the processing of the whole human intestine to facilitate the analysis of region-specific characteristics such as tissue architecture and changes in cell populations.

View Article and Find Full Text PDF

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

Aim: Within the in vitro fertilization (IVF) process, to evaluate the possibility of using the state of the meiotic spindle of oocytes as an indicator of maturity in order to optimize the timing of vitrification.

Patients And Methods: In the presented report, the cause of couple infertility was a combination of a 38-year-old female and 43-year-old male with azoospermia, which was an indication for oocyte vitrification. Oocyte polar bodies and optically birefringent meiotic spindles were visualized by polarized light microscopy and their states and relative positions were used as indicators of oocyte maturation, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!