The gap junction protein connexin-45 (Cx45) is expressed in the conduction system of the heart and in certain neurons of the retina and brain. General and cardiomyocyte-directed deficiencies of Cx45 in mice lead to lethality on embryonic day 10.5 as a result of cardiovascular defects. Neuron-directed deletion of Cx45 leads to defects in transmission of visual signals. Connexin-36 (Cx36) is co-expressed with Cx45 in certain types of retinal interneurons. To determine whether these two connexins have similar functions and whether Cx36 can compensate for Cx45, we generated knock-in mice in which DNA encoding Cx45 was replaced with that encoding Cx36. Neuron-directed replacement of Cx45 with Cx36 resulted in viable animals. Electroretinographic and neurotransmitter coupling analyses demonstrated functional compensation in the retina. By contrast, general and cardiomyocyte-directed gene replacement led to lethality on embryonic day 11.5. Mutant embryos displayed defects in cardiac morphogenesis and conduction. Thus, functional compensation of Cx45 by Cx36 did not occur during embryonic heart development. These data suggest that Cx45 and Cx36 have similar functions in the retina, whereas Cx45 fulfills special functions in the developing heart that cannot be compensated by Cx36.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.068668DOI Listing

Publication Analysis

Top Keywords

cx45 cx36
12
cx45
10
developing heart
8
general cardiomyocyte-directed
8
lethality embryonic
8
embryonic day
8
functional compensation
8
cx36
7
neuronal connexin-36
4
connexin-36 functionally
4

Similar Publications

Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations.

View Article and Find Full Text PDF

Physiological and pathological processes such as homeostasis, embryogenesis, development, tumorigenesis, and cell movement depend on the intercellular communication through gap junctions (GJIC). Connexin (Cx)-based GJ channels are formed of two apposing hemichannels in the contiguous cells and provide a direct pathway for electrical and metabolic intercellular communication. The main modulators of GJ conductance are transjunctional voltage, intracellular pH, Ca, Mg, and phosphorylation.

View Article and Find Full Text PDF

Connexin45 colocalization patterns in the plexiform layers of the developing mouse retina.

J Anat

August 2023

Health & Life Sciences, Applied Sciences, Northumbria University, Newcastle upon Tyne, UK.

Chemical and electrical synapses (gap junctions) are widely prevalent in the nervous system. Gap junctions emerge long before chemical synapses, allowing communication between developing cells, and are thought to be involved in establishing neural circuits. Mounting evidence indicates that these two modalities of synaptic transmission closely interact during retinal development and that such interactions play a critical role in synaptogenesis and circuit formation during the perinatal period.

View Article and Find Full Text PDF

During embryonic germ layer development, cells communicate with each other and their environment to ensure proper lineage specification and tissue development. Connexin (Cx) proteins facilitate direct cell-cell communication through gap junction channels. While previous reports suggest that gap junctional intercellular communication may contribute to germ layer formation, there have been limited comprehensive expression analyses or genetic ablation studies on Cxs during human pluripotent stem cell (PSC) germ lineage specification.

View Article and Find Full Text PDF

GAP junctions: multifaceted regulators of neuronal differentiation.

Tissue Barriers

January 2022

Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.

Gap junctions are intercellular membrane channels consisting of connexin proteins, which contribute to direct cytoplasmic exchange of small molecules, substrates and metabolites between adjacent cells. These channels play important roles in neuronal differentiation, maintenance, survival and function. Gap junctions regulate differentiation of neurons from embryonic, neural and induced pluripotent stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!