Associated abnormalities of the white matter in patients with agyria-pachygyria complex have rarely been investigated using new imaging modalities like diffusion tensor imaging. The present study evaluated the white matter changes of 9 children with agyria-pachygyria complex using diffusion tensor imaging. Regions of interest were placed in 17 white matter tracts. Compared with normal controls, the axial diffusivity of the genu of the corpus callosum, corticospinal tract, and fornix in patients with agyria-pachygyria complex was decreased. In the subcortical white matter without changes in T2-weighted image, there were significant decreases in fractional anisotropy and axial diffusivity and increases in radial diffusivity, indicating significant alterations of the white matter. Since axial diffusivity and radial diffusivity reflect changes in the axon and myelin, respectively, the findings here indicate disturbance in both axonal and myelin development in agyria-pachygyria complex.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0883073810382452DOI Listing

Publication Analysis

Top Keywords

white matter
24
agyria-pachygyria complex
20
matter changes
12
diffusion tensor
12
tensor imaging
12
axial diffusivity
12
complex diffusion
8
patients agyria-pachygyria
8
radial diffusivity
8
matter
6

Similar Publications

Objectives: To investigate glymphatic function in idiopathic normal pressure hydrocephalus (iNPH) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations of ALPS index with ventriculomegaly and white matter hyperintensities (WMH).

Materials And Methods: This study included 41 patients with iNPH and 40 age- and sex-matched normal controls (NCs). All participants underwent brain MRI.

View Article and Find Full Text PDF

In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.

View Article and Find Full Text PDF

Reward Decision Network Disconnection in Poststroke Apathy: A Prospective Multimodality Imaging Study.

Hum Brain Mapp

February 2025

Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Apathy is a common neuropsychiatric symptom following stroke, characterized by reduced goal-directed behavior. The reward decision network (RDN), which plays a crucial role in regulating goal-directed behaviors, is closely associated with apathy. However, the relationship between poststroke apathy (PSA) and RDN dysfunction remains unclear due to apathy heterogeneity, the confounding effect of depression and individual variability in lesion impacts.

View Article and Find Full Text PDF

Background: Tetrahydrobiopterin (BH4) deficiencies comprise a group of five neurometabolic disorders caused by five genetic defects responsible for BH4 biosynthesis and regeneration. Their global prevalence remains unknown, and variance exists among different countries.

Aims: To describe clinical, biochemical, molecular genetic data and follow-up of patients with BH4 deficiency seen in Tawam Hospital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!