Epitaxy is a widely used method to grow high-quality crystals. One of the key challenges in the field of inorganic solids is the development of epitaxial single-crystal nanostructures. We describe their formation from block copolymer self-assembly-directed nanoporous templates on single-crystal Si backfilled with Si or NiSi through a laser-induced transient melt process. Depending on thickness, template removal leaves either an array of nanopillars or porous nanostructures behind. For stoichiometric NiSi deposition, the template pores provide confinement, enabling heteroepitaxial growth. Irradiation through a mask provides access to hierarchically structured materials. These results on etchable and non-etchable materials suggest a general strategy for growing epitaxial single-crystal nanostructured thin films for fundamental studies and a wide variety of applications, including energy conversion and storage.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1193369DOI Listing

Publication Analysis

Top Keywords

block copolymer
8
copolymer self-assembly-directed
8
epitaxial single-crystal
8
single-crystal
4
self-assembly-directed single-crystal
4
single-crystal homo-
4
homo- heteroepitaxial
4
heteroepitaxial nanostructures
4
nanostructures epitaxy
4
epitaxy method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!