Galaxy clusters form through a sequence of mergers of smaller galaxy clusters and groups. Models of diffusive shock acceleration suggest that in shocks that occur during cluster mergers, particles are accelerated to relativistic energies, similar to conditions within supernova remnants. In the presence of magnetic fields, these particles emit synchrotron radiation and may form so-called radio relics. We detected a radio relic that displays highly aligned magnetic fields, a strong spectral index gradient, and a narrow relic width, giving a measure of the magnetic field in an unexplored site of the universe. Our observations show that diffusive shock acceleration also operates on scales much larger than in supernova remnants and that shocks in galaxy clusters are capable of producing extremely energetic cosmic rays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1194293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!