Background: Active and passive immunotherapy in both amyloid-beta precursor protein (APP) transgenic mice and Alzheimer's Disease (AD) patients have resulted in remarkable reductions in amyloid plaque accumulation, although the degree of amyloid regression has been highly variable. Nine individuals with a clinical diagnosis of AD dementia were actively immunized with the Aβ peptide 1-42 (AN-1792) and subjected to detailed postmortem biochemical analyses. These patients were compared to 6 non-immunized AD cases and 5 non-demented control (NDC) cases.

Results: All patients were assessed for the presence of AD pathology including amyloid plaques, neurofibrillary tangles and vascular amyloidosis. This effort revealed that two immunotherapy recipients had dementia as a consequence of diseases other than AD. Direct neuropathological examination consistently demonstrated small to extensive areas in which amyloid plaques apparently were disrupted. Characterization of Aβ species remnants by ELISA suggested that total Aβ levels may have been reduced, although because the amounts of Aβ peptides among treated individuals were extremely variable, those data must be regarded as tentative. Chromatographic analysis and Western blots revealed abundant dimeric Aβ peptides. SELDI-TOF mass spectrometry demonstrated a substantive number of Aβ-related peptides, some of them with elongated C-terminal sequences. Pro-inflammatory TNF-α levels were significantly increased in the gray matter of immunized AD cases compared to the NDC and non-immunized AD groups.

Conclusions: Immunotherapy responses were characterized by extreme variability. Considering the broad range of biological variation that characterizes aging and complicates the recognition of reliable AD biomarkers, such disparities will make the interpretation of outcomes derived from epidemiologic and therapeutic investigations challenging. Although in some cases the apparent removal of amyloid plaques by AN-1792 was impressive, proportionate alterations in the clinical progression of AD were not evident. The fact that plaque elimination did not alter the trajectory of decline into dementia suggests the likelihood that these deposits alone are not the underlying cause of dementia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2959013PMC
http://dx.doi.org/10.1186/1750-1326-5-39DOI Listing

Publication Analysis

Top Keywords

amyloid plaques
12
aβ peptides
8
amyloid
5
5
biochemical aftermath
4
aftermath anti-amyloid
4
immunotherapy
4
anti-amyloid immunotherapy
4
immunotherapy background
4
background active
4

Similar Publications

Purpose Of Review: Using advanced bibliometric analysis, we systematically mapped the most current literature on urban air pollution and neurodevelopmental conditions to identify key patterns and associations. Here, we review the findings from the broader literature by discussing a distilled, validated subset of 44 representative studies.

Recent Findings: Literature highlights a complex relationship between environmental toxins, neurodevelopmental disorders in children, and neurobehavioral pathways involving oxidative stress, neuroinflammation, and protein aggregation.

View Article and Find Full Text PDF

Microglial activation states and their implications for Alzheimer's Disease.

J Prev Alzheimers Dis

January 2025

School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.

View Article and Find Full Text PDF

Background: Soluble species of multimeric amyloid-beta including globular amyloid-beta oligomers (AβOs) and linear amyloid-beta protofibrils are toxic to neurons. Sabirnetug (ACU193) is a humanized monoclonal antibody, raised against globular species of soluble AβO, that has over 650-fold greater binding affinity for AβOs over monomers and appears to have relatively little binding to amyloid plaque.

Objectives: To assess safety, pharmacokinetics, and exploratory measures including target engagement, biomarker effects, and clinical efficacy of sabirnetug in participants with early symptomatic Alzheimer's disease (AD; defined as mild cognitive impairment and mild dementia due to AD).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) can be diagnosed by in vivo abnormalities of amyloid-β plaques (A) and tau accumulation (T) biomarkers. Previous studies have shown that analyses of serial position performance in episodic memory tests, and especially, delayed primacy, are associated with AD pathology even in individuals who are cognitively unimpaired. The earliest signs of cortical tau pathology are observed in medial temporal lobe (MTL) regions, yet it is unknown if serial position markers are also associated with early tau load in these regions.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!