Organ-specific tubular and collagen-based composite scaffolds.

Tissue Eng Part C Methods

Department of Biochemistry 280, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.

Published: March 2011

The body contains a number of organs characterized by a tubular shape. In this study, we explored several methodologies for the construction of collagenous tubular scaffolds and films with defined (ultra)structure, length, diameter, orientation, and molecular composition. Standardization of molding, casting, freezing, and lyophilizing techniques using inexpensive materials and methods resulted in controllable fabrication of a wide variety of tubular and tissue-specific tubular scaffolds and films. Analysis included immunohistochemical and (ultra)structural examination. Handling and suturability were found adequate for tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2010.0269DOI Listing

Publication Analysis

Top Keywords

tubular scaffolds
8
scaffolds films
8
organ-specific tubular
4
tubular collagen-based
4
collagen-based composite
4
composite scaffolds
4
scaffolds body
4
body number
4
number organs
4
organs characterized
4

Similar Publications

A coaxial 3D bioprinted hybrid vascular scaffold based on decellularized extracellular matrix/nano clay/sodium alginate bioink.

Int J Biol Macromol

December 2024

State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:

Currently, vascular grafting is the preferred option to replace or bypass the defective vascular segments, but finding materials with good biocompatibility and diversity alternative for practical clinical applications are still the challenge. The construction of tissue engineered blood vessels (TEBVs) with complex structures will be realized using 3D bioprinting technology, which provides a new idea for vascular transplantation. In this paper, the decellularized extracellular matrix (dECM)/nano clay (NC)/sodium alginate (SA) hybrid bioink was prepared to construct tubular scaffolds in vitro by coaxial 3D bioprinting.

View Article and Find Full Text PDF

CUL4B protects kidneys from acute injury by restraining p53/PAI-1 signaling.

Cell Death Dis

December 2024

Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Acute kidney injury (AKI) caused by nephrotoxins, ischemia reperfusion (IR) or sepsis is associated with high morbidity and mortality. Unveiling new mechanisms underlying AKI can help develop new therapeutic strategy. Cullin 4B (CUL4B) is a scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex.

View Article and Find Full Text PDF

Second Generation I-Body AD-214 Attenuates Unilateral Ureteral Obstruction (UUO)-Induced Kidney Fibrosis Through Inhibiting Leukocyte Infiltration and Macrophage Migration.

Int J Mol Sci

December 2024

Renal Medicine, Kolling Institute of Medical Research, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.

Kidney fibrosis is the common pathological pathway in progressive chronic kidney disease (CKD), and current treatments are largely ineffective. The C-X-C chemokine receptor 4 (CXCR4) is crucial to fibrosis development. By using neural cell adhesion molecules as scaffolds with binding loops that mimic the shape of shark antibodies, fully humanized single-domain i-bodies have been developed.

View Article and Find Full Text PDF

Glycyrrhetin urea has emerged as a privileged scaffold with anti-inflammatory activity for the treatment and prevention of acute kidney injury (AKI). In this study, structural modifications of the A ring of glycyrrhetinic acid yielded a series of urea derivatives, among which compound exhibited the most promising anti-inflammatory activity. was confirmed to interact with STING through a cellular heat shift assay and to inhibit the STING/NF-κB pathway in RAW264.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a prevalent global health issue, primarily caused by glomerular dysfunction, diabetes, endovascular disorders, hypertensive nephrosclerosis, and other vascular diseases. Despite the increase in available organ sources, significant challenges remain in securing organ compatibility, prompting extensive research into creating a bio-artificial kidney free from immune rejection. In this study, a bio-engineered kidney was established using a stem cell chemoattractant within a bioreactor system; rBMSCs were used to recellularize the decellularized kidney scaffold coated with SDF-1α/AKI-CKD cytokine juice under mimic-hypoxic conditions as these chemokines and cytokines are crucial for the cell migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!