Neural stem cell (NSC)-based therapy is actively being pursued in preclinical and clinical disease models. Magnetic resonance imaging (MRI) cell tracking promises to optimize current cell transplantation paradigms, however, it is limited by dilution of contrast agent during cellular proliferation, transfer of label from dying cells to surrounding endogenous host cells, and/or biodegradation of the label. Here, we evaluated the applicability of magnetic resonance imaging for long-term tracking of transplanted neural stem cells labeled with superparamagnetic iron oxide and transfected with the bioluminescence reporter gene luciferase. Mouse neural stem cells were transplanted into immunodeficient, graft-accepting Rag2 mice or immunocompetent, graft-rejecting Balb/c mice. Hypointense voxel signals and bioluminescence were monitored over a period of 93 days. Unexpectedly, in mice that rejected the cells, the hypointense MR signal persisted throughout the entire time-course, whereas in the nonrejecting mice, the contrast cleared at a faster rate. In immunocompetent, graft-rejecting Balb/c mice, infiltrating leukocytes, and microglia were found surrounding dead cells and internalizing superparamagnetic iron oxide clusters. The present results indicate that live cell proliferation and associated label dilution may dominate contrast clearance as compared with cell death and subsequent transfer and retention of superparamagnetic iron oxide within phagocytes and brain interstitium. Thus, interpretation of signal changes during long-term MR cell tracking is complex and requires caution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031985PMC
http://dx.doi.org/10.1002/mrm.22613DOI Listing

Publication Analysis

Top Keywords

neural stem
16
cell tracking
12
stem cells
12
superparamagnetic iron
12
iron oxide
12
long-term cell
8
cells
8
dead cells
8
magnetic resonance
8
resonance imaging
8

Similar Publications

3D bioprinted dynamic bioactive living construct enhances mechanotransduction-assisted rapid neural network self-organization for spinal cord injury repair.

Bioact Mater

April 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe condition that often leads to permanent functional impairments. The current treatment options are limited and there is a need for more effective treatments. Human umbilical cord mesenchymal stem cells (hUCMSCs) have shown promise in promoting neuroregeneration and modulating immune response.

View Article and Find Full Text PDF

Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks. Transplantation of neural stem cells holds promise to repair disrupted connections. Yet, ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.

View Article and Find Full Text PDF

Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents. While it is known transforming growth factor-β signaling is important in embryonic neurogenesis, its role in postnatal neurogenesis remains unclear. In this study, to define the precise role of transforming growth factor-β signaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo, we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-β signaling in neural stem cells in (mGFAPcre-ALK5fl/fl-Ai9) or immature neuroblasts in (DCXcreERT2-ALK5fl/fl-Ai9).

View Article and Find Full Text PDF

Motor modules are largely unaffected by pathological walking biomechanics: a simulation study.

J Neuroeng Rehabil

January 2025

Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA.

Background: Motor module (a.k.a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!