Neural stem cell (NSC)-based therapy is actively being pursued in preclinical and clinical disease models. Magnetic resonance imaging (MRI) cell tracking promises to optimize current cell transplantation paradigms, however, it is limited by dilution of contrast agent during cellular proliferation, transfer of label from dying cells to surrounding endogenous host cells, and/or biodegradation of the label. Here, we evaluated the applicability of magnetic resonance imaging for long-term tracking of transplanted neural stem cells labeled with superparamagnetic iron oxide and transfected with the bioluminescence reporter gene luciferase. Mouse neural stem cells were transplanted into immunodeficient, graft-accepting Rag2 mice or immunocompetent, graft-rejecting Balb/c mice. Hypointense voxel signals and bioluminescence were monitored over a period of 93 days. Unexpectedly, in mice that rejected the cells, the hypointense MR signal persisted throughout the entire time-course, whereas in the nonrejecting mice, the contrast cleared at a faster rate. In immunocompetent, graft-rejecting Balb/c mice, infiltrating leukocytes, and microglia were found surrounding dead cells and internalizing superparamagnetic iron oxide clusters. The present results indicate that live cell proliferation and associated label dilution may dominate contrast clearance as compared with cell death and subsequent transfer and retention of superparamagnetic iron oxide within phagocytes and brain interstitium. Thus, interpretation of signal changes during long-term MR cell tracking is complex and requires caution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031985 | PMC |
http://dx.doi.org/10.1002/mrm.22613 | DOI Listing |
Bioact Mater
April 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.
View Article and Find Full Text PDFExp Ther Med
March 2025
Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830000, P.R. China.
Spinal cord injury (SCI) is a severe condition that often leads to permanent functional impairments. The current treatment options are limited and there is a need for more effective treatments. Human umbilical cord mesenchymal stem cells (hUCMSCs) have shown promise in promoting neuroregeneration and modulating immune response.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Ajou University School of Medicine, Department of Brain Science, Suwon, Republic of Korea.
Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks. Transplantation of neural stem cells holds promise to repair disrupted connections. Yet, ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA.
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents. While it is known transforming growth factor-β signaling is important in embryonic neurogenesis, its role in postnatal neurogenesis remains unclear. In this study, to define the precise role of transforming growth factor-β signaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo, we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-β signaling in neural stem cells in (mGFAPcre-ALK5fl/fl-Ai9) or immature neuroblasts in (DCXcreERT2-ALK5fl/fl-Ai9).
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA.
Background: Motor module (a.k.a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!