Efrapeptins (EF), a family of fungal peptides, inhibit proteasomal enzymatic activities and the in vitro and in vivo growth of HT-29 cells. They are also known inhibitors of F(1)F(0)-ATPase, a mitochondrial enzyme that functions as an Hsp90 co-chaperone. We have previously shown that treatment of cancer cells with EF results in disruption of the Hsp90:F(1)F(0)-ATPase complex and inhibition of Hsp90 chaperone activity. The present study examines the effect of EF on breast cancer growth in vitro and in vivo. As a monotherapy, EF inhibited cell proliferation in vitro with an IC(50) value ranging from 6 nM to 3.4 μM. Inhibition of Hsp90 chaperone function appeared to be the dominant mechanism of action and the factor determining cellular sensitivity to EF. In vitro inhibition of proteasome became prominent in the absence of adequate levels of Hsp90 and F(1)F(0)-ATPase as in the case of the relatively EF-resistant MDA-MB-231 cell line. In vivo, EF inhibited MCF-7 and MDA-MB-231 xenograft growth with a maximal inhibition of 60% after administration of 0.15 and 0.3 mg/kg EF, respectively. 2-Deoxyglucose (2DG), a known inhibitor of glycolysis, acted synergistically with EF in vitro and antagonistically in vivo. In vitro, the synergistic effect was attributed to a prolonged endoplasmic reticulum (ER) stress. In vivo, the antagonistic effect was ascribed to the downregulation of tumoral and/or stromal F(1)F(0)-ATPase by 2DG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059793 | PMC |
http://dx.doi.org/10.1007/s12192-010-0231-9 | DOI Listing |
J Med Chem
January 2025
Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.
Diabetic wound healing remains a major challenge in modern medicine. The persistent inflammation and immune dysfunction hinder angiogenesis by producing excessive ROS and increasing the susceptibility to bacterial infection. In this study, we developed an integrated strategy for whole-process management of diabetic wounds based on a bioinspired adhesive hydrogel platform with hemostasis, photothermal antimicrobial, antioxidant, anti-inflammatory, and angiogenic properties.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America.
Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!