The majority of cell culture studies have assessed the effect of hormones on cancer cell growth using media supplemented with charcoal-treated fetal bovine serum (CTS). We aimed to determine whether using a system more reflective of the human condition by changing the charcoal-treated serum to an untreated pooled human serum (PHS) resulted in the same hormone responses in breast and prostate cell lines. MCF-7 breast cancer, MCF-10A non-transformed breast, and LNCaP prostate cancer cell lines supplemented with PHS were treated with high and low physiological concentrations of six hormones (17β-estradiol, dehydroepiandosterone (DHEA), dihydrotestosterone (DHT), testosterone, insulin, and glucagon). Cell growth was measured after 72 h of incubation. All hormones stimulated growth of MCF-7 cells (p < 0.05). MCF-10A cell growth was inhibited by DHEA, DHT, and testosterone (p < 0.05), unaffected by 17β-estradiol and glucagon, and stimulated by insulin (p < 0.05). LNCaP cell growth was stimulated by the highest concentration of DHEA and DHT (p < 0.05) and inhibited by the highest concentration of 17β-estradiol (p < 0.05), while insulin and testosterone, had no effect. Overall, PHS lowered the magnitude of the effect of hormones on cell growth in comparison to CTS. Due to the presence of all serum constituents, our model represents a more appropriate physiological environment for determining the effect of hormones on cancer cell growth. Further studies are required to determine the mechanisms by which added hormones interact with the constituents of untreated human serum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-010-9351-xDOI Listing

Publication Analysis

Top Keywords

physiological concentrations
8
insulin glucagon
8
breast prostate
8
human serum
8
cancer cell
8
cell growth
8
cell lines
8
cell
5
concentrations sex
4
hormones
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!